HW #2 - MATH 6310 FALL 2019

DUE: FRIDAY, SEPTEMBER 13TH

(1) Recall that the *index* of a subgroup $H \leq G$ is [G : H], the number of cosets (left = right) of H. Show that every subgroup of index 2 is normal. Conclude that A_n is normal in S_n .

(2) Suppose that H and H' are simple groups¹ and set $G = H \times H'$ a group with the product (componentwise) group structure. Show that every normal subgroup of G that is not {1} or G, is isomorphic to H or H'.

Hint: Show that the intersection of normal subgroups is normal. Note, that not every subgroup will be of the form $H \times \{1\}$ and $\{1\} \times H'$ (in particular, think of the case where $H = \mathbb{Z}/p\mathbb{Z} = H'$ under addition).

¹Groups with no proper nontrivial normal subgroups.

(3) Compute the cosets of $H = \langle (12) \rangle$ in S_3 . Show explicitly with an example that addition of cosets via the formula (aH)(bH) = (ab)H is not well defined.

(4) Suppose $S \subseteq G$ is a subset of a group such that $gSg^{-1} \subseteq S$ for all $g \in G$. Show that $\langle S \rangle$ is normal. Next let $T \subseteq G$ be another subset and form the set $V = \bigcup_{g \in G} g^{-1}Tg$. Show that $\langle V \rangle$ is the unique smallest normal subgroup of G containing T.

(5) Determine $\operatorname{Aut}S_3$. Here $\operatorname{Aut}(G)$ is the group of bijective group homomorphisms $\phi: G \to G$ (isomorphisms) under composition.

- (6) For any $a \in G$ consider the map $\phi_a : G \to G$ defined by $\phi_a(x) = axa^{-1}$.

 - (a) Show that φ_a is an automorphism. (It is called an *inner automorphism*).
 (b) Show that a → φ_a gives us a homomorphism G → Aut(G) with kernel equal to Z(G) the center² of G.
 - (c) Let Inn(G) be the image of the map in (ii). Show that $\text{Inn}(G) \cong G/Z(G)$.
 - (d) Finally show that Inn(G) is a normal subgroup of Aut(G).

 $^{^2\}mathrm{Those}$ elements of G that commute with every other element of G

(7) **Extra credit:** Consider the free group F on the set $\{x_2, \ldots, x_n\}$. Consider the normal subgroup K generated by the following elements $x_i^2, (x_i x_j)^3, (x_i x_j x_i x_k)^2$ (for i, j, k distinct). Show that F/K is isomorphic to S_n .