HW #1 - MATH 6310 FALL 2019

DUE: FRIDAY, AUGUST 30TH

1. Show that any finite group of even order contains an element of order 2, in other words an element $a \neq 1$ such that $a^2 = 1$. Use only what we've covered in class so far.

2. Is the additive group of integers isomorphic to the additive group of rationals?

3. Show that any finite generated subgroup of the additive group of rationals is cyclic. Use this to show that the additive group of rationals is not isomorphic to $\mathbb{Q} \oplus \mathbb{Q}$ where the group operation is vector addition.

4. Write

(456)(567)(671)(123)(234)(345)

as a product of disjoint cycles.

5. Consider the following set of functions:

 $\{\alpha : \mathbb{R}^2 \to \mathbb{R}^2 \mid \alpha \text{ is a rotation around the origin } or a reflection across a line through the origin}\}$ Show that this set is a group under composition of functions. **6.** Let G be a finitely generated group and suppose that $H \subseteq G$ is a subgroup of finite index. Prove that H is also finitely generated.