NOTES – MATH 6320 FALL 2017

KARL SCHWEDE

1. FRIDAY, DECEMBER 1ST, 2017

As before, all rings are commutative.

1.1. Tensor products, continued.

Proposition 1.1. If $0 \to L \xrightarrow{a} M \xrightarrow{b} N \to 0$ is an exact sequence and T is another R-module, then

$$L \otimes_R T \xrightarrow{\alpha} M \otimes_R T \xrightarrow{\beta} N \otimes_R T \longrightarrow 0$$

is also exact.

This proposition asserts that \otimes is *right-exact* (it takes short exact sequences to sequences that are exact on the right).

Proof. It is easy to see that β is surjective, indeed if $n \otimes t \in N \otimes T$, then since $M \to N$ is surjective, there exists $m \in M$ such that b(m) = n. Hence $m \otimes t \mapsto n \otimes t$ and it follows that β surjects.

We now need to show that ker $\beta = \operatorname{im} \alpha$. Let $C = \operatorname{im} \alpha$, we already know that $C \subseteq \ker \beta$ and so we have a map $\gamma : (M \otimes_R T)/C \longrightarrow N \otimes_R T$. It is sufficient to show that this map is injective. Define a map

$$\sigma: N \otimes_R T \longrightarrow (M \otimes_R T)/C$$

by $n \otimes t \mapsto b_1(n) \otimes t$ where $b_1(n)$ is any $m \in M$ with b(m) = n and $\overline{\bullet}$ denotes the image after modding out by C. We need to show that σ is well defined. Suppose that m and m' are such that b(m) = b(m') = n then we need to show that $\overline{m \otimes t} = \overline{m' \otimes t}$ (this is the same as showing that the obvious bi-linear map from the universal property is well defined). But since b(m) = b(m'), there exists $l \in L$ such that a(l) = m - m'. Therefore since $a(l) \otimes t \in C$, we see that $\overline{(m - m') \otimes t} = 0$ and $\overline{m \otimes t} = \overline{m' \otimes t}$. This shows σ is well defined. Now, $(M \otimes_R T)/C \xrightarrow{\gamma} N \otimes_R T \xrightarrow{\sigma} (M \otimes_R T)/C$ sends $\overline{m \otimes t}$ back to itself. It follows that γ is injective. \Box

The functors of Hom and tensor are closely related.

Theorem 1.2 (Hom $-\otimes$ adjointness). If L, M, N are R-modules, then there is an R-module isomorphism:

$$\operatorname{Hom}_{R}(L \otimes_{R} M, N) \cong \operatorname{Hom}_{R}(L, \operatorname{Hom}_{R}(M, N))$$

Proof. Given $\phi \in \operatorname{Hom}_R(L, \operatorname{Hom}_R(M, N))$ we need to construct $\Phi(\phi) \in \operatorname{Hom}_R(L, \operatorname{Hom}_R(M, N))$. We an action of ϕ on elements of $L \otimes_R M$. Given $\sum l_i \otimes m_i$ we define

$$\phi(\sum l_i \otimes m_i) = \sum (\phi(l_i))(m_i)$$

Note that each $\phi(l_i) \in \operatorname{Hom}_R(M, N)$ so it makes perfect sense to act upon m_i . Thus we have defined Φ .

To go the other way, suppose that $\psi \in \operatorname{Hom}_R(L \otimes_R M, N)$, and we will define $\Psi(\psi) \in \operatorname{Hom}_R(L, \operatorname{Hom}_R(M, N))$. So choose $l \in L$. Then $\Psi(\psi)(l) = \psi(l \otimes \underline{\ })$ where the blank is to be filled in from M.

We should verify that $\Psi \circ \Phi$ and $\Phi \circ \Psi$ are the identities. But I will leave this to you (I think we'll do one direction as a class).

Now we discuss a proof of the right exactness of \otimes via the left exactness of Hom.

Lemma 1.3. $\otimes_R M$ is right exact for any *R*-module *M*.

Proof. We suppose that $0 \to A \to B \to C \to 0$ is exact and we want to show that

$$A \otimes_R M \to B \otimes_R M \to C \otimes_R M \to 0$$

is exact. It is sufficient to show that

 $0 \to \operatorname{Hom}_{R}(C \otimes_{R} M, N) \to \operatorname{Hom}_{R}(B \otimes_{R} M, N) \to \operatorname{Hom}_{R}(A \otimes_{R} M, N)$

is exact for any R-module N (by the worksheet). But that is exact if and only if

$$0 \to \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R}(C, N)) \to \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R}(B, N)) \to \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R}(A, N))$$

is exact by the adjointness of tensor and Hom (we also need to know that the adjointness isomorphism is compatible with morphisms in the M variable, but it is, I won't check it though). But this is exact if

$$0 \to \operatorname{Hom}_R(C, N) \to \operatorname{Hom}_R(B, N) \to \operatorname{Hom}_R(A, N)$$

is exact, which follows if $A \to B \to C \to 0$ is exact (which it is).

The rest of the class we spent on the worksheet.