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As before, all rings are commutative.

1.1. Tensor products. There is one really useful fact about localization of
modules.

Lemma 1.1. Suppose that φ : M −→ N is an injective map of R-modules
and W ⊆ R is a multiplicative system, then the induced map

φ′ : W−1M −→W−1N

is also injective. Equivalently the induced map, W−1R⊗RM −→W−1R⊗RN
is injective.

Proof. Ok, what do I mean by φ′? φ′(m/w) = φ(m)/w (what else could it
be?) Suppose that φ′(m/w) = φ(m)/w = 0. Hence there exists v ∈W such
that vφ(m) = 0. But vφ(m) = φ(vm) so that vm = 0 since φ is injective.
But then 0 = m/v ∈W−1M . �

It is actually really uncommon that tensoring preserves injectivity (as
we’ll see in the next section). Modules L such that if M −→ N is injective,
then so is L⊗M −→ L⊗N are called flat. Thus W−1R is a flat R-module.

What we have just done is a great example of a special type of tensor
product called extension of scalars. Suppose M is an R-module, R −→ S is
a ring homomorphism, and we really want to makeM into an S-module. The
most obvious thing to do is M ⊗R S. Then S can act on this tensor product
on the right. For example, R[x] ⊗R C ∼= C[x]. Likewise Z[x] ⊗Z (Z/nZ) ∼=
(Z/nZ)[x].

1.2. Exactness of tensor products and the Hom functor. We have
just seen that localization of modules (ie tensoring with the localized ring)
preserve injectivities of modules. This is NOT true for arbitrary tensor
products.

Example 1.2. Indeed, consider the injection Z ×2−−→ Z and let us tensor it
with ⊗ZZ/2Z. Then we have the map

(1.2.1) Z⊗Z Z/2Z (×2)⊗(id)−−−−−−→ Z⊗Z Z/2Z.
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Note that first Z⊗ZZ/2Z ∼= Z/2Z. Let’s convince ourselves of this explicitly,
indeed each a⊗b = 1⊗ab and so we can represent each element of the tensor
as an element of Z/2Z. Of course, there is a surjective map Z⊗Z Z/2Z −→
Z/2Z (coming from the universal property of the tensor product) and the
isomorphism follows.

We return to the map and observe that 1 ⊗ 1 is sent to 2 ⊗ 1 = 1 ⊗ 2 =
1 ⊗ 0 = 0. In particular, the map from (1.2.1) is the zero map and hence
not injective.

Tensor products do preserve a lot of other properties though.

Definition 1.3 (Short exact sequences). Suppose that L,M,N are R-
modules. A short exact sequence, denoted

0 −→ L
φ−→M

ψ−→ N −→ 0

is a pair of maps φ : L −→M and ψ : M −→ N such that φ is injective, ψ is
surjective and kerψ = imφ.

For example, 0 −→ Z ×2−−→ Z −→ Z/2Z −→ 0 is a short exact sequence.

Example 1.4. The canonical example of a short exact sequence comes from
picking I ⊆ R an ideal and forming:

0 −→ I −→ R −→ R/I −→ 0.

Short exact sequences are special cases of exact sequences.

Definition 1.5 (Exact sequence). Suppose that {Ci} is a collection of R-

modules with maps Ci
φi−→ Ci+1, written diagrammatically as:

. . .
φi−2−−−→ Ci−1

φi−1−−−→ Ci
φi−→ Ci+1

φi+1−−−→ Ci+2
φi+2−−−→ . . .

This is called a (cochain) complex if kerφi ⊇ imφi−1 for all i. It is called
an exact sequence if kerφi = imφi−1 for all i.

As we have already seen, tensor products do not preserve exact sequences
(since they don’t preserve injections, which can be written as exact sequences
0 −→M −→ N). However, the following is true.

Proposition 1.6. If 0 −→ L
a−→ M

b−→ N −→ 0 is an exact sequence and T
is another R-module, then

L⊗R T
α−→M ⊗R T

β−→ N ⊗R T −→ 0

is also exact.

This proposition asserts that ⊗ is right-exact (it takes short exact se-
quences to sequences that are exact on the right).

Proof. It is easy to see that β is surjective, indeed if n ⊗ t ∈ N ⊗ T , then
since M −→ N is surjective, there exists m ∈M such that b(m) = n. Hence
m⊗ t 7→ n⊗ t and it follows that β surjects.
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We now need to show that kerβ = imα. Let C = imα, we already know
that C ⊆ kerβ and so we have a map γ : (M ⊗R T )/C −→ N ⊗R T . It is
sufficient to show that this map is injective. Define a map

σ : N ⊗R T −→ (M ⊗R T )/C

by n ⊗ t 7→ b1(n)⊗ t where b1(n) is any m ∈ M with b(m) = n and •
denotes the image after modding out by C. We need to show that σ is
well defined. Suppose that m and m′ are such that b(m) = b(m′) = n then
we need to show that m⊗ t = m′ ⊗ t (this is the same as showing that the
obvious bi-linear map from the universal property is well defined). But since
b(m) = b(m′), there exists l ∈ L such that a(l) = m −m′. Therefore since

a(l)⊗ t ∈ C, we see that (m−m′)⊗ t = 0 and m⊗ t = m′ ⊗ t. This shows

σ is well defined. Now, (M ⊗R T )/C
γ−→ N ⊗R T

σ−→ (M ⊗R T )/C sends
m⊗ t back to itself. It follows that γ is injective. �

We’ll see another proof later once we understand the relation of ⊗ with
Hom. Indeed, at least as fundamental as the ⊗ functor is the Hom func-
tor. Suppose that M,N are R-modules. Then HomR(M,N) is the set of
R-module homomorphisms M −→ N . It is an R-module since r.φ is defined
by (r.φ)(m) = rφ(m) = φ(rm). In other words, r can act on either the
domain or the codomain, it doesn’t matter. Now suppose that η : L −→ M
is a module homomorphism. Then we have an induced R-module homomor-
phism:

Φ : HomR(M,N) −→ HomR(L,N)

defined by
(
Φ(f)

)
(l) = f(η(l)).

On the other and, of δ : N −→ O is an R-module homomorphism, then
obtain:

Ψ : HomR(M,N) −→ HomR(M,O)

which is defined by
(
Φ(f)

)
(m) = δ(f(m)).

Proposition 1.7. The functors HomR(•, N) and HomR(M, •) are both left-
exact. In other words, if

0 −→ A
f−→ B

g−→ C −→ 0

is an exact sequence of R-modules, then

0 −→ HomR(C,N)
g′−→ HomR(B,N)

f ′−→ HomR(A,N)

is exact and

0 −→ HomR(M,A)
f ′′−→ HomR(M,B)

g′′−→ HomR(M,C)

is also exact.

Proof. See the worksheet. �


	1. Wednesday, November 29th, 2017
	1.1. Tensor products
	1.2. Exactness of tensor products and the `39`42`"613A``45`47`2mu-:6muplus1mu"603AHom functor


