HW #9 - MATH 6310 FALL 2017

DUE: FRIDAY, DECEMBER 1ST

- (1) Determine the number of non-isomorphic abelian groups of order 360.
- (2) Determine, up to similarity, all real 5×5 matrices A with minimal polynomial $(x-1)^2(x+1)$.
- (3) Consider the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & -2 & 0 & 1 \\ -2 & 0 & -1 & -2 \end{pmatrix}$$

Find the rational and Jordan canonical forms for A.

- (3) Show that any matrix is similar to its transpose.
- (4) Let M be a 3×3 complex matrix with $M^6 = M^4$ and $M^4 + M^2 = 2M^3$. Determine the possible Jordan canonical forms for M.
- (5) Suppose that $R = \mathbb{Z}[i]$ and M and N are finitely generated R-modules such that

$$M \oplus R^{\oplus 2} \oplus R/2R \cong N \oplus R \oplus R/(1+i)R \oplus R \oplus R/(1-i)R.$$

Is it true that $M \cong N$? (Be careful about which elements are relatively prime).

- (6) Let k be a finite field with p elements (and p is prime). Determine the number of 2×2 nilpotent² matrices.
- (7) Let M be the cokernel of the map $\mathbb{Z}^{\oplus 2} \to \mathbb{Z}^{\oplus 3}$ given by the matrix

$$\left(\begin{array}{rrr} 3 & 6\\ 4 & 10\\ 10 & 22 \end{array}\right)$$

Write M as a direct sum of cyclic groups.

¹The lowest degree monic polynomial f such that f(A) = 0.

²Matrices A such that $A^n = 0$ for some n.