HW #8 - MATH 6310 FALL 2017

DUE: FRIDAY, NOVEMBER 17TH

(1) Suppose that R is a commutative ring and $\phi: M \to N$ is a homomorphism of R-modules. Suppose that L is another R module. Show that there is an R-module homomorphism

 $\psi : \operatorname{Hom}_R(N, L) \longrightarrow \operatorname{Hom}_R(M, L).$

Further show that if ϕ is surjective, then ψ is injective.

- (2) Let M be a left \mathbb{Q} -module. If we fix the Abelian group structure + on M, show that there is only \mathbb{Q} -module structure that can be put on M.
- (3) Suppose that R is commutative and that $\phi : R^{\oplus n} \to R^{\oplus n}$ is a surjective R-module homomorphism. Show that ϕ is bijective. Give an example to show that ϕ can be injective without being bijective.
- (4) Show that if p is prime and e > 0 then $\mathbb{Z}/(p^e)$, viewed as a \mathbb{Z} -module, cannot be written as a direct sum of two nonzero \mathbb{Z} -modules. On the other hand, if p and q are relatively prime integers, show that

$$\mathbb{Z}/(pq) \cong \mathbb{Z}/(p) \oplus \mathbb{Z}/(q)$$

as \mathbb{Z} -modules.

- (5) Let M and N be R-modules and suppose that $f: M \to N$ and $g: N \to M$ are R-module homomorphisms such that $f \circ g = \mathrm{Id}_N$. Show that $M \cong \ker(f) \oplus \mathrm{image}(g)$.
- (6) Obtain a normal form for the \mathbb{Z} -matrix

$$\begin{bmatrix} 6 & 2 & 3 & 0 \\ 2 & 3 & -4 & 1 \\ -3 & 3 & 1 & 2 \\ -1 & 2 & -3 & 5 \end{bmatrix}$$

(7) Suppose that D is a Euclidean domain. Show that any invertible matrix is a product of elementary matrices.