HW #7 - MATH 6310 FALL 2017

DUE: FRIDAY, NOVEMBER 10TH

- (1) What are the prime ideals in the Gaussian integers $\mathbb{Z}[i]$? (You may use without proof that $\mathbb{Z}[i]$ is a Euclidean domain or PID).
- (2) Prove Eisenstein's irreducibility criterion. If $f = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$ and there exists a prime p such that $p|a_i$ for $i \leq n-1$, $p \not|a_n$ and $p^2 \not|a_0$, then f is irreducible in $\mathbb{Q}[x]$.
- (3) Use Eisenstein's criterion to prove that if p is prime in \mathbb{Z} then $x^{p-1} + x^{p-2} + \cdots + 1 = (x^p 1)/(x 1)$ is irreducible in $\mathbb{Q}[x]$.
- (4) Prove that if D is a domain which is not a field, that D[x] is not a PID.
- (5) Determine $\operatorname{End}(\mathbb{Q})$ where \mathbb{Q} is an Abelian group under addition.
- (6) Let M be a finite nonzero Abelian group. When can M be made into a left \mathbb{Q} -module?
- (7) Prove that for any ring R and any R-module M, $\operatorname{Hom}_R(R, M) \cong M$.
- (8) A left ideal $I \subseteq R$ is called *maximal* if $R \neq I$ and there are no left ideals I' such that $I \subsetneq I' \subsetneq R$. Show that a left *R*-module *M* is irreducible if and only if $M \cong R/I$ where *I* is a maximal left ideal of *R*.