HW #2 - MATH 6310 FALL 2017

DUE: FRIDAY, SEPTEMBER 8TH

- (1) Recall that the *index* of a subgroup $H \leq G$ is [G : H], the number of cosets (left = right) of H. Show that every subgroup of index 2 is normal. Conclude that A_n is normal in S_n .
- (2) Suppose that H and H' are simple groups and set $G = H \times H'$ a group with the product (componentwise) group structure. Show that every normal subgroup of G that is not $\{1\}$ or G, is isomorphic to H or H'.

Hint: Show that the intersection of normal subgroups is normal.

- (3) Compute the cosets of $H = \langle (12) \rangle$ in S_3 . Show explicitly with an example that addition of cosets via the formula (aH)(bH) = (ab)H is not well defined.
- (4) Suppose G is a group. Consider the function from G to itself, $a \mapsto a^{-1}$. Show that this function is an automorphism if and only if G is Abelian.
- (5) Determine $\operatorname{Aut}S_3$.
- (6) For any $a \in G$ consider the map $\phi_a : G \to G$ defined by $\phi_a(x) = axa^{-1}$.
 - (i) Show that ϕ_a is an automorphism. (It is called an *inner automorphism*).
 - (ii) Show that $a \mapsto \phi_a$ gives us a homomorphism $G \to \operatorname{Aut}(G)$ with kernel equal to Z(G) the center¹ of G.
 - (iii) Let Inn(G) be the image of the map in (ii). Show that $\text{Inn}(G) \cong G/Z(G)$.
 - (iv) Finally show that Inn(G) is a normal subgroup of Aut(G).

¹Those elements of G that commute with every other element of G