HOMEWORK #3 – MATH 5405 SPRING 2016

DUE: TUESDAY 2/22/2016

- (1) Suppose you are given the block of data (16 bytes) consisting of all zeroes. Compute what the output of the
 - (a) ByteSub on that data?
 - (b) What is the output of ShiftRow on the output of ByteSub from (a)? (Please use the description of shiftrow from the text, in particular, still output a matrix).
 - (c) What is the output of MixColumn on the output of ShiftRow from (b)?
 - (d) Suppose that the roundkey for this round is made of all 1s. What is the output of the AddRoundKey phase. Provide a list of 16 bytes (numbers).
- (2) Do Exercise 3 from pages 162-163 of the text Trappe and Washington.
- (3) Do Exercise 4 from page 163 of the text Trappe and Washington.
- (4) Do Exercise 5 from page 163 of the text Trappe and Washington.
- (5) Let's describe one more factorization algorithm (you can even implement it before class on March 10th). This is called Pollard's Rho. If p is a factor of n then the expectation is that this will usually find a factor of n in some constant times \sqrt{p} steps.
 - (a) Lookup the birthday problem on the internet and find an answer the following question. How many randomly chosen numbers x_i in the range $0, \ldots, n-1$ are required so that there is at least a 50% probability that $x_i = x_j$ for some $i \neq j$. You don't need to prove that your answer is right.
 - (b) The idea for us now we create a list of "random" numbers less than n. We do this by picking a polynomial g(x) (usually $g(x) = x^2 + 1$), and then setting

 $x_1 = 2, x_2 = g(x_1) \mod n, \dots, x_{i+1} = g(x_i) \mod n, \dots$

We want to quickly find *i* and *j* where $x_i \equiv_p x_j$ so that $d = \gcd(x_i - x_j, n) > 1$. First define a new sequence y_i as follows.

$$y_1 = x_1 = 2, y_2 = g(g(y_1)) \mod n, y_3 = g(g(y_2)) \mod n, \dots, y_{i+1} = g(g(y_i)) \mod n, \dots$$

Prove the following.

Claim: If t and l are the smallest integers such that $x_t \equiv_p x_{t+l}$ (and hence $x_t = x_{t+2l} = x_{t+3l} = \ldots$), then $x_i \equiv_p y_i$ in at most t+l steps.

Hint: What is y_i in terms of x_i . Try setting $i = t + l - (t \mod l)$ and showing that $x_i = x_{2i}$.

- (c) Now define the sequences x_i and y_i as in part (b). If $x_i \equiv_p y_i$ how could you use that to find find a factor p of n?
- (d) Write pseudo-code for that uses the above method to find factors of n.