HOMEWORK #1 – MATH 5405 SPRING 2016

DUE: THURSDAY, 1/21/2016

- (1) Use the Euclidean algorithm to compute the multiplicative inverse of 131 modulo 1979. Then solve $131x \equiv 11 \pmod{1979}$.
- (2) Write down a multiplication table for $\mathbb{Z}/15\mathbb{Z}$ and identify the invertible elements. Consider the group of invertible elements under multiplication mod 15. Does this group have a generator/a primitive root?¹
- (3) Suppose that a, b > 0 are integers. Suppose that d is the smallest positive integer of the form d = ax + by where $x, y \in \mathbb{Z}$. We want to show that $d = \gcd(a, b)$. We do this in several steps.
 - (a) Suppose e = as + bt > 0 is another integer where $s, t \in \mathbb{Z}$. Prove that d divides e. Hint: If d does not divide e, find the remainder of the division and contradict the minimality of d.
 - (b) Use (a) to show that d divides both a and b.
 - (c) Suppose that c is another divisor of both a and b, show that c divides d.
 - *Hint:* Indeed, show that c divides everything of the form au + bv.
 - (d) Use parts (b) and (c) to conclude that $d = \gcd(a, b)$.
- (4) Suppose that F is a finite field with p^c elements where p is some prime. Let F^{\times} denote the group of units under multiplication. Let's give a quick proof that F^{\times} is cyclic (ie, it has a generator or primitive root).
 - (a) Suppose that $x \in F^{\times}$ is an element of largest order, say m = |x|. If $m < p^c 1 = |F^{\times}|$, show that there there is an element y with $y^m \neq 1$ and hence that |y| does not divide m
 - (b) Let n = |y|. Show there is a prime power q^v where $q^v|n$ but q^v does not divide m. Show that $s = y^{n/q^v}$ has order q^v .
 - (c) Let q^u be the largest power of q which divides m. Show that $t = x^{q^u}$ has order m/q^u .
 - (d) Prove the following lemma. If a, b are elements of an Abelian group with relatively prime orders, then $|ab| = |a| \cdot |b|$.
 - *Hint:* Notice than a a and a^{-1} have the same order.
 - (e) Apply the lemma from (d), to the elements s and t and contradict the maximality of the choice of x.
- (5) Consider the ring $\mathbb{Z}/2\mathbb{Z}[x]/(x^2 = x + 1)$. This is the polynomial ring where we declare $x^2 = x + 1$. Hence every polynomial in the ring can be rewritten as a linear polynomial by repeatedly applying this relation.
 - (a) Write down all the elements in this ring.
 - (b) Write down the multiplication table for this ring and verify that the ring is a field.

¹An element whose order is equal to the size of the group. A group with a generator is called *cyclic*.