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Recall a field is a commutative ring with unity where every element has a multiplicative inverse
(aa−1 = 1). Recall the following result from class.

Lemma: Suppose R is an integral domain1 with finitely many elements. Then R is a field.

Proof. Suppose 0 6= x ∈ R. Consider the set {x, x2, x3, . . .} ⊆ R. This set must have some repeats
since R has finitely many elements. Suppose m > n ≥ 1 and xm = xn. Then

xn · xm−n = xm = xn = xn · 1
and so xm−n = 1 by the cancellation property for integral domains. But now

xxm−n−1 = 1

and so xm−n−1 = x−1 is the inverse for x. We just proved that every nonzero element has an inverse
and so finite integral domains are fields as claimed. �

We talked about the next fact in class, but didn’t write it down formally.

Lemma: Suppose that F is a field. Then F [x] is an integral domain.

Proof. Remember that F [x] is the polynomials in x with coefficients in F . It is easy to see that these
form a commutative ring with unity under + and · for polynomials. So suppose that a(x) ·b(x) = 0.
Suppose for a contradiction that a(x) 6= 0 6= b(x). In that case we see that the degree of a(x) · b(x)
is deg(a(x)) + deg(b(x)).2 But that is impossible since 0 has degree −∞ (the usual convention).
We conclude that a(x) = 0 or b(x) = 0 which completes the proof. �

Here’s another lemma.

Lemma: Suppose that F is a field. Then either F contains a subfield which looks like Q, or F
contains a subfield that looks like Z/p for some prime p.

Proof. Suppose first that the characteristic of F is n > 0. This means that 0 = n·1 = 1+1+· · ·+1 =∑n
i=1 and n is the smallest integer > 0 satisfying this property. If n is composite n = ab with

a, b > 1. Then 0 = n · 1 = ab · 1 = (a · 1) · (b · 1). Since fields are integral domains, either a · 1 = 0 or
b · 1 = 0 but this contradicts the minimality of our choice of n. This proves that the characteristic
n = p of F is prime. Consider the set {0, 1, 2 · 1 · · · , (p− 1) · 1}. I claim this is a subfield of F that
looks just like Z/p. But this is easy, the addition and multiplication is just done mod p.

Now suppose that the characteristic of F is 0, which means that n · 1 is never zero unless n is
zero. The same argument above implies that F contains a subring that looks just like Z. But once
you are a field and you contain Z, you also have to have inverses of all your elements, so you have
elements that look like 1

n . But then you have m · 1n too so you have a subfield of F that looks just
like Q. �

Now, suppose that f(x) ∈ F [x] is a polynomial of degree > 0. We say that f(x) is irreducible in
F [x] if whenever we write f(x) = g(x) · h(x) with g(x), h(x) ∈ F [x], then either deg(g(x)) = 0 or
deg(h(x)) = 0. Note that x2 − 3 is irreducible in Q[x] but it is not irreducible in R[x].

1This means if ab = 0 then a = 0 or b = 0 and if ab = ac then b = c as long as a 6= 0.
2If F is an arbitrary ring, this isn’t always true. Notice that in (Z/4)[x], (2x) · (2x) = 0.

1



Theorem: If F is a field and q(x) ∈ F [x] is an irreducible polynomial, then (F [x])/q(x) is a field.

Proof. We first show that (F [x])/q(x) is an integral domain. Indeed, suppose a(x), b(x) ∈ (F [x])/q(x)
and that a(x) · b(x) = 0. Just like for the integers modulo an integer, this means that q(x)|(a(x) ·
b(x)). Since q(x) is irreducible, this implies that q(x)|a(x) or q(x)|b(x). Implicitly we are using that
we can factor polynomials uniquely, or alternately that irreducible polynomials are “prime”. The
proof though, is essentially the same as it was for the integers. Returning to the proof, if q(x)|a(x)
then a(x) = 0 ∈ (F [x])/q(x). Likewise if q(x)|b(x) then b(x) = 0 ∈ (F [x])/q(x). Either way, we are
done.

Now we prove that (F [x])/q(x) is a field. We will restrict to the special case that F is a finite
field since that’s the case that will interest us this semester. Then we know that all the elements of
(F [x])/q(x) are represented as polynomials with coefficients in F of degree < deg q(x). There are
only finitely many of those (see the first problem on worksheet #2). Thus (F [x])/q(x) is a finite
integral domain and hence a field. �
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