
COMPUTER PROGRAMMING TAKE HOME FINAL – MATH 5405

SPRING 2016

DUE: MONDAY MAY 2ND

We will implement the Elliptic Curve Digital Signature Algorithm in python using our previous
work on elliptic curves. You may work together to get any previous work fully functional (ie,
adding points on elliptic curves). If you can’t get your previous code to work, send me an email
and you can use mine if you want. You may also work together to get the hashing functions working
(computing the z below).

This assignment is worth 1/6th of your Final Exam score, hence 5% of your total grade.
I created a file ECDSA.py and at the top put

import EC

import hashlib

import random

Remember, the ECDSA works as follows.
We fix an elliptic curve E (over a finite field) and a point Q of prime order n. Alice’s private

key is an integer dA and she computes QA = dA ·Q. To sign a message, she does the following.

(1) Compute e = HASH(m) where m is the message.
(2) Somehow turn e into a number z in [1, n-1]. The official implementation is to take the

appropriate left-most number of bits.
(3) Choose a random integer k ∈ [1, n− 1].
(4) Calculate the curve point kQ = (x1, y1).
(5) Compute r = x1 mod n (if r == 0, choose a new k).
(6) Compute s = k−1(z + rdA) mod n, if zero, choose a new k and compute r and s again.
(7) Return (r, s).

We will implement this.

1. HASH

Now need a HASH function. Fortunately several are built right into python. Indeed, see

https://docs.python.org/2/library/hashlib.html#module-hashlib

For instance

>>> import hashlib

>>> m = hashlib.sha256()

>>> m.update("Honesty is the first chapter in the book of wisdom. Thomas Jefferson")

>>> s = m.digest()

>>> s

>>> len(s)

>>> s = m.hexdigest()

>>> s

>>> int(s, 16)

Note here s is a string of exactly 32 characters. It turned that quote of Jefferson into another string
of random (non-readable) characters. The final int(s,16) command turns the number (written in
hexidecimal) into an integer

1

You now need to turn this into a number between 1 and n− 1. Figure out how you want to do
this. You could just turn your string s into a number, and then take it modulo n (or maybe n−2?)
The point is . Here is how my function began. Remember, you can work with groups on this part.

def HashMessage(message, n):

h = hashlib.sha256()

h.update(message)

s = h.hexdigest()

val = int(s, 16)

return ...

2. Signature Implementation

Now write a ECDSA function. Here’s how my function started

def sign(m, Q, n, d, Elist, char):

#m is the message,

#d is the private key

#Q is my point,

#n = ord(Q) is the prime number I already computed elsewhere

#(or someone computed for me).

#Elist is my elliptic curve,

#char is the characteristic

z = HashMessage(m, n)

myRand = random.SystemRandom() # a cryptographically secure random number generator

r = 0

while(r == 0):

k = myRand.randint(1,n-1)

kQ = EC.multPt(k,Q,Elist,char) #this is my function that computes k*Q,

#you might have called your function something different

...

r = x1%n

...

return [r,s]

Note every signature you create with this algorithm will be different, even for the same message
m. This is because of the randomly chosen k.

Your turned in work... must include a working signature function.

3. Signature Verification

Alice will publicly share R = dA ·Q, Q, n = ord(Q), the elliptic curve and characteristic, since
that is her public key. Remember, the expectation is that it is hard for someone to figure out what
dA is knowing only R and Q (it’s the discrete log problem for elliptic curves). Alice will also share
the message m, and her signature [r,s] which her function returned.

To verify the signature, Bob does the following

(1) Compute e = HASH(m) where m is the message.
(2) Somehow turn e into a number z in [1, n-1]. The official implementation is to take the

appropriate left-most number of bits. You must use the same implementation as Alice does
though!

(3) Compute w = s−1 mod n
(4) Compute u1 = zw mod n and u2 = rw mod n.

2

(5) Compute T = (x1, x2) = u1 ·Q + u2 ·R.
(6) Verify that r ≡n x1.

I started my implementation as follows.

def validate(m, R, Q, n, Elist, char, signature):

#m,Q,n,Elist,char as as above

#R is d*Q, this is Alice’s public key

#signature is the list [r,s] above

r = signature[0]

s = signature[1]

z = HashMessage(m, n)

...

return ((T[0])%n == r%n)

Your turned in work... must include a working validation function.

4. Check your own work.

The following elliptic curve and point Q are the ones used in bitcoin.

• The characteristic is

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663

• The elliptic curve is defined by
y2 = x3 + 7

• The point Q = (x, y) is defined as

x = 55066263022277343669578718895168534326250603453777594175500187360389116729240
y = 32670510020758816978083085130507043184471273380659243275938904335757337482424

• The order of Q is

n = 115792089237316195423570985008687907852837564279074904382605163141518161494337

Verify that Q is on the curve (to make sure your elliptic curve functions are working).
Finally, send a message to yourself and validate it, using the elliptic curve above to make sure

your signature functions are working. Remember, you will have to choose your own random d (your
private key) and you will have to compute d ·Q (your public key). Include a copy of this output in
your turned in assignment.

Your turned in work... must include a copy of this output showing that your signature validation
scheme works.

3

