
COMPUTER EXPERIMENTATION #5 – MATH 5405

SPRING 2016

DUE: THURSDAY, MARCH 3RD

We will implement the p− 1 and p+ 1 factorization schemes from the text. The p− 1 scheme is
easy. The p + 1 is a bit more work since we don’t yet have a good polynomial class in python, but
it isn’t all that difficult in the end. We’ll just have to think things through carefully.

The p− 1 method

First let’s implement the p − 1 method. I created a file called Factor.py where I stored my
functions, but you can make your own if you want, or use an old file. It’s up to you.

First let’s make a function that takes the number n we want to factor, then does the p− 1 test
based on a user-specified a.

def pMinusOne(n, a):

d = fractions.gcd(a,n)

if (d > 1):

return d

flag = False

#flag is set to True when we find a factor, but not before

ai = a

i = 2

while (flag == False):

...

i = i+1

return d

Try it where n is the product of a couple 5+ digit primes (you can use Rabin-Miller to find these
largish primes).

Next, make a new function that does the test on a series of a values. I set up mine like

def finalpMinusOne(n):

a = 2

d = n

while ((d == n) and (a < n)):

...

a = a+1

return d

Again, try it on some products of relatively large primes.

1

The p + 1 method

This is the one where we had to deal with things of the form a + b
√
d = a + bx where a and b

are taken modulo n and x =
√
d is something we picked.

Let’s fix a d and represent a + b
√
d as a list of two numbers [a,b]. First we’ll create a function

which takes two such polynomials and does the computation (a + b
√
d)(c + e

√
d) = (ac + bed) +

(ae + bc).

def prodElts(ll1, ll2, d, m):

a = ll1[0]

b = ll1[1]

c = ll2[0]

e = ll2[1]

return [(a*c+b*e*d)%m, (a*e+b*c)%m]

Next, we need to be able to compute

(a + b
√
d)m = a′ + b′

√
d

in a somewhat efficient way (where the a′ and b′ are represented modulo n).
Our next function will be one that takes in [a,b], d, m and outputs a list [a’,b’] as above. An

obvious way to write this function is something like this.

def powOfAPlusBSqrtDSlow(ll, m, d,n):

a = ll[0]

b = ll[1]

i = 1

curll = ll

while (i < m):

curll = prodElts(curll, ll,d,n)

i = i+1

return curll

Figure out why this works, and then figure out a way to make a much faster function. I made a
much faster function that relied on recursion and the idea that (a + b)5 = ((a + b)2)2(a + b).

def powOfAPlusBSqrtD(ll, m, d, n):

#first grab the two values from my list

a = ll[0]

b = ll[1]

#we do this recursively

#the zeroth power is 1+0\sqrt{d}

if (m == 0):

return [1,0]

elif (m == 1):

return ll

else:

...

#here ll1 is now ll^(m%2) and ll2 is (ll^(m//2))^2

return prodElts(ll1,ll2,d,n)

See if your powOfAPlusBSqrtD is much faster than powOfAPlusBSqrtDSlow for m large (say around
100,000,000).

2

Ok, now that our preliminaries are out of the way, we can try implementing the p + 1 method.
Remember, instead of choosing a random a, we now choose a random z = a + b

√
d. I’ll first create

a function that uses a user-specified z.

def pPlusOne(n, z, d):

normZ = prodElts(z, [z[0], (-1)*z[1]], d, n)

mygcd = fractions.gcd(normZ[0], n)

if (mygcd > 1):

return mygcd

flag = False

#flag is set to True when we find a factor, but not before

zi = z

i = 2

while (flag == False):

...

return mygcd

3

