
COMPUTER EXPERIMENTATION #4 – MATH 5405

SPRING 2016

DUE: THURSDAY, FEBRUARY 25TH

We will implement Miller-Rabin’s primality test and some related methods.
I want to emphasize that you should be creating functions (using the def command). You can

then reuse your code much more easily.
We start with Miller-Rabin.

(1) First create a function which figures out how many powers of 2 divide a number. I made
mine something like this.

def power2Count(n):

while (n%2 == 0):

n = n/2

i = i+1

return [i - 1, n]

See if you can figure out why returned what I did.
(2) Now let’s make a function RabinMiller which checks if a particular number a proves that

n is composite (via Rabin-Miller). It should return True if the number is composite, and
return False the test is inconclusive. I started my function like this.

def RMCompositeTest(a,n):

shortList = power2Count(n-1)

k = shortList[0]

q = shortList[1]

#note then that n-1 = 2^k * q

...

Then I checked if aq ≡n 1 (if so, I return False). Next I did a loop and checked whether

a2
iq ≡n −1. If any of those occurred, then I returned False as well. At the end of my

function, I returned True.
(3) Now we need to make our Rabin-Miller test effective. We need a way to generate random

numbers (random a values) to plug into our RMCompositeTest function. The random

package has a randint function that does exactly this. Try somethings like the following.

>>> import(random)

>>> random.randint(2,5)

>>> random.randint(2, 928751)

>>> random.randint(2, 57698071938671389761903467134906713489071)

>>> random.randint(2, 57698071938671389761903467134906713489071)

>>> random.randint(2, 57698071938671389761903467134906713489071)

(4) Now let’s write a function that will generate a number of random a values and check them
all to see if n is proved composite. I started mine like this.

import random

def runRMKTimes(K, n):

for j in range(0,K):
1

a = random.randint(2,n-1)

...

Once you get this working (ie, after you try some small primes), why don’t you see how
long your computer takes to run 1000 Rabin-Miller tests on the integer

272676216491295973959508015206718758113.

Or better yet on

63284471040164158444018175739936364784861149130589697636234001800263675941527.

Remember, if your random integers are really random, this should prove to within

(1 − 0.251000) · 100%

certainty that these numbers are prime.
(5) Now, let’s make a function that finds the next number that is probably prime after a given

number. I made mine so as to take a value, and then just check every odd number after it
with C Rabin-Miller tests (user specified). Here’s how I started mine.

#I pass it the number C and the number n.

It tries to find the next prime after n by doing C Rabin-Miller tests.

def findNextPrime(C, n):

if (n % 2 == 0):

n = n+1

#if n is even, make it odd, we will incremement by 1

flag = True

while (flag == True):

...

n = n+2

return n-2

Play around with it, can you find some big primes?

2

