WORKSHEET ON THE NULLSTELLENSATZ FOR ARBITRARY RINGS

MATH 538 FALL 2013

Suppose R is a ring.

Definition 0.1 (Residue fields, vanishing functions). For each prime $P \in \operatorname{Spec} R$, we define the residue field k(P) to be the field of fractions of R/P. We say that $f \in R$ vanishes at P if the image of f is zero in k(P) (this is clearly the same as asking that $f \in P$), in which case we write f(P) = 0. More generally f(P) denotes the image of f in k(P). Given any subset $Z \subseteq \operatorname{Spec} R$, we define

$$I(Z)=\{f\in R\mid f(P)=0\}$$

We will prove a version of the Nullstellensatz in this generality, where everything is much easier.

1. Show that I(Z) = R if and only if $Z = \emptyset$.

2. Show that $I(V(J)) = \sqrt{J}$.

3. Show that $V(J+J') = V(J) \cap V(J')$ and that $V(J \cap J') = V(J) \cup V(J')$.

4. Show that $I(Y \cup Z) = I(Y) \cap I(Z)$ and that if Y and Z are closed $I(Y \cap Z) = \sqrt{I(Y) + I(Z)}$.