HOMEWORK #7 – MATH 538 FALL 2013

DUE MONDAY, DECEMBER 9TH

- (1) Suppose that (R, \mathfrak{m}) is a regular local ring with dim R = d and $\mathfrak{m} = \langle f_1, \ldots, f_d \rangle$. Show that $R/\langle f_1, \ldots, f_i \rangle$ is also regular for each *i*.
- (2) Suppose that (R, \mathfrak{m}) is a local ring and $f \in R$ is a non-zero divisor and non-unit such that $R/\langle f \rangle$ is regular. Prove that R is regular.
- (3) Suppose that $S = \mathbb{C}[x_1, \ldots, x_n]$ and $f \in \mathfrak{m} = \langle x_1, \ldots, x_n \rangle \in S$. Suppose that V(f) is a manifold at the origin (ie, $\frac{\partial f}{\partial x_i}(\mathbf{0}) \neq 0$ for some *i*). Show that $R = S_{\mathfrak{m}}/\langle f \rangle$ is a regular local ring. Further suppose that \mathfrak{n} is the maximal ideal of R. Show that $\mathfrak{n}/\mathfrak{n}^2$ can be canonically identified with the \mathbb{C} -dual of the tangent space of V(f) at the origin.

Aside: You may also want to read Theorem 5.1 in Chapter I of Hartshorne, for some additional discussion.

- (4) Suppose that $R = R_0 \oplus R_1 \oplus R_2 \oplus R_3 \dots$ is a graded Noetherian ring and set $R_+ = 0 \oplus R_1 \oplus R_2 \oplus \dots$, the *irrelevant ideal of R*.
 - (a) An ideal $I \subseteq R$ is called *homogeneous* if I can be generated by homogeneous elements (ie, if $I = \langle f_1, \ldots, f_m \rangle$ where each $f_j \in R_{d_j}$ lives in a single degree). Show that I is homogeneous if and only if $I = I_0 \oplus I_1 \oplus I_2 \oplus \ldots$ where $I_i = I \cap R_i$.
 - (b) We define $\operatorname{Proj} R$ to be the set of homogeneous prime ideal that do not contain R_+ , in other words

 $\operatorname{Proj} R = \{ P \in \operatorname{Spec} R \mid R_+ \not\subset P, P \text{ is homogeneous} \}.$

For any homogeneous ideal $I \subseteq R$ we define

$$V(I) = \{P \in \operatorname{Proj} R \mid I \subseteq P\}$$

Show that the sets V(I) define the closed sets of a topology on Proj R.

- (c) Prove that the maximal homogeneous ideals of $\mathbb{C}[x_0, \ldots, x_n]$ (with the usual grading, each x_i has degree 1) are in bijection with the points of $\mathbb{P}^n(\mathbb{C})$ (projective *n*-space over \mathbb{C}).
- (d) For each homogeneous element $f \in R_i$, we define¹ $R_{(f)}$ to be the subring of $R_f = \{1, f, f^2, \ldots\}^{-1}R$ of elements of degree exactly zero (for instance, if $g, f \in R_2$, then $g/f \in R_{(f)}$). Show that there is a bijection between $\operatorname{Spec} R_{(f)}$ and $(\operatorname{Proj} R) \setminus V(f)$.
- Aside: It turns out that the Spec $R_{(f)}$ form an affine cover for the scheme Proj R.
- (5) Suppose that S = k[x, y] and consider the Rees algebra (a graded ring)

$$R = k[x, y] \oplus \langle x, y \rangle \oplus \langle x, y \rangle^2 \oplus \langle x, y \rangle^3 \oplus \dots$$

Describe $\operatorname{Proj} R$ geometrically.

¹Yes, the notation is horrible!