HOMEWORK #6 – MATH 538 FALL 2013

DUE THURSDAY, NOVEMBER 21ST

(1) Suppose that M is an R-module and

 $0 = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq \ldots \subsetneq M_n = M$

is a chain of submodules such that each M_i/M_{i+1} is simple (the only submodules are 0 and itself). This is called a *composition series for* M. Show that the length of the composition series is independent and so $n = \lambda(M)$ the length of M.

- (2) Suppose that $0 \to L \to M \to N \to 0$ is a short exact sequence. Show that $\lambda(M) = \lambda(L) + \lambda(N)$ where λ is the length of M. Conclude that if $0 \to M_1 \to M_2 \to M_3 \to \ldots \to M_s \to 0$ is exact then $\sum (-1)^i \lambda(M_i) = 0$.
- (3) Suppose that R is a Noetherian ring, $\mathfrak{a} \subseteq R$ is an ideal and \widehat{R} is the \mathfrak{a} -adic completion of R with natural map $h: R \to \widehat{R}$. Show that if $x \in R$ is not a zero divisor, then h(x) is also not a zero divisor.

The next problem gives an example where \widehat{R} is *not* an integral domain, even though R is. (4) Computations of completions.

- (a) Suppose that $R = k[x, y]/\langle y^2 x^3 x^2 \rangle$. Compute the completion \widehat{R} of R at the maximal ideal $\langle x, y \rangle$. Show that \widehat{R} is not an integral domain even if R is. Find a geometry reason for this.
- (b) Now determine if $R = k[x, y]/\langle y^2 x^3 \rangle$ is a domain after completion at $\langle x, y \rangle$.
- (5) Suppose that R is a ring containing a field of characteristic p > 0. Let $F : R \to S = R$ be the Frobenius morphism. (I use S to help distinguish the target and source).
 - (a) Suppose that $W \subseteq R$ is a multiplicative set. Show that $W^{-1}S$ is (abstractly) isomorphic to $W^{-1}R$ and that the induced map $W^{-1}R \to W^{-1}S$ is the Frobenius morphism.
 - (b) Now suppose that $\mathfrak{a} \subseteq R$ is an ideal, R is Noetherian, and F makes S into a finitely generated R-module. Show that the \mathfrak{a} -adic completion \widehat{S} of S is (abstractly) isomorphic to the \mathfrak{a} -adic completion \widehat{R} of R. Show that with this identification, the induced map

$$\widehat{R} \longrightarrow \widehat{S} \cong S \otimes_R \widehat{R}$$

is again the Frobenius map on \widehat{R} . is