HOMEWORK #4 – MATH 538 FALL 2013

DUE FRIDAY, OCTOBER 18TH

- (1) Let R be an integral domain and K(R) its field of fractions. We define the *normalization* of R to be the integral closure of R in K(R), in this class we will denote it by R^{N} . We say that R is *normal* if it is its own normalization.
 - (a) Compute the normalization of k[t], $k[t^2, t^3]$, $k[t(t-1), t^2(t-1)]$.
 - (b) Show that the formation of R^{N} commutes with localization, in other words that $W^{-1}(R^{N}) = (W^{-1}R)^{N}$.
 - (c) Suppose that $R \to S$ is a map of rings. Do we always have an induced map between the normalizations? Find a sufficient condition which implies that there is such a map.
- (2) Finish the proof of the going up theorem from the worksheet. Here is what you need to do.
 - (a) Suppose that $R \subseteq S$ is integral Suppose that $Q \subseteq Q'$ are prime ideals of S and that $P = Q \cap R = Q' \cap R$. Show that Q = Q'.
 - (b) [The going up theorem] Suppose that $R \subseteq S$ is integral. If $P_1 \subseteq \ldots \subseteq P_n$ is a chain of prime ideals of R and $Q_1 \subseteq \ldots \subseteq Q_m$ is a chain of prime ideals of R with m < n and $Q_i \cap R = P_i$ for $1 \leq i \leq m$, then there exist $Q_{i+1} \subseteq \ldots \subseteq Q_n$, containing Q_i so that $Q_i \cap R = P_i$ for $1 \leq i \leq n$.
- (3) Suppose $A \subseteq B$ is a ring extension and that $y, z \in B$ satisfy quadratic integral dependence relations $y^2 + ay + b = 0$ and $z^2 + cz + d = 0$ over A. Find explicit integral dependence relations for y + z and yz.
- (4) Recall that a topological space Y is called *irreducible* if whenever $Y = W \cup Z$ is decomposed as a union of closed sets, then W = Y or Z = Y.
 - (a) Suppose that $I \subseteq k[x_1, \ldots, x_n]$ and $k = \overline{k}$. Show that $\mathbb{V}(I) \subseteq k^n$ is irreducible if and only if \sqrt{I} is prime.
 - (b) Suppose that $I \subseteq R$ is a ring. Show that $V(I) \subseteq \operatorname{Spec} R$ is irreducible if and only if \sqrt{I} is prime.
- (5) Suppose that R is a Noetherian ring. Is it true that there exists an integer $n_0 > 0$ such that
 - (a) every ideal $I \subseteq R$ is generated by at most n_0 elements?
 - (b) every ascending chain of ideals $I_1 \subsetneq I_2 \subsetneq \ldots$ has length at most n_0 ?
 - Prove or give a counter example.
- (6) Let A = k[x, y], $I = \langle x \rangle$ and B = k. We have the natural projection $f : A \to A/I$ and the natural inclusion $g : k \hookrightarrow A/I \cong k[y]$. Consider the ring $C = \{(a, b) \in A \oplus B \mid f(a) = g(b)\}$ as in problem (9) from homework 2. Show that C is non-Noetherian even though it is a subring of a Noetherian ring.
- (7) Show that every finitely generated module over a Noetherian ring is finitely presented.
- (8) Show that every Artinian integral domain is a field.
- (9) Suppose that (R, \mathfrak{m}) is an Artinian local ring. Show that \mathfrak{m} is nilpotent, if that $\mathfrak{m}^e = 0$ for $e \gg 0$.