
HOMEWORK #3 – MATH 538

FALL 2013

DUE FRIDAY, OCTOBER 4TH

(1) Suppose that R is a ring and M and M ′ are R-modules. Prove that M ⊕M ′ is flat if and only
if M and M ′ are individually flat.

Solution: If A −→ B is injective. Then we have a commutative diagram

A⊗ (M ⊕M ′) //

∼
��

B ⊗ (M ⊕M ′)

∼
��

(A⊗M)⊕ (A⊗M ′) // (B ⊗M)⊕ (B ⊗M ′)

it is easy to see that the vertical maps are isomorphisms. Then we see immediately that the
top horizontal map is injective (that is, M ⊕M ′ is flat) if and only if the bottom horizontal
map is injective. But the bottom is the direct sum of two maps, and that is injective if and
only if each A⊗M −→ B ⊗M and A⊗M ′ −→ B ⊗M ′ are injective. In other words if M , and
M ′ are flat.

(2) A R-module P is called projective if for every surjective map of R-modules f : A −→ B and
every R-module map g : P −→ B, there exists a map h : P −→ A such that the following
diagram commutes:

P
h

~~

g

��

A
f
// B.

(a) Show that a free module is projective.

Solution: Consider RΓ a free module and suppose we are given f : A −→ B and
g : RΓ −→ B. For each standard basis element eγ ∈ RΓ, consider bγ = g(eγ). Choose aγ
such that f(aγ) = bγ . Finally we define h(eγ) = aγ . The diagram obviously commutes.

(b) Suppose that 0 −→ A
f−→ B

g−→ P −→ 0 is exact, prove that

0 −→ HomR(P,M) −→ HomR(B,M) −→ HomR(A,M) −→ 0

is exact for every R-module M if P is projective.

Solution: (Sketch) We only need to show that HomR(B,M) −→ HomR(A,M) surjects
since the rest holds for any R-module P . Since P is projective, there exists a map h :

P −→ B such that P
h−→ B

g−→ P is an isomorphism (make g the identity in the diagram
above). It follows easily that B ∼= A ⊕ P where f becomes the canonical injection and
g becomes the canonical projection. To see this claim, consider map A ⊕ P −→ B which
sends (a, p) 7→ f(a) + h(p). Given b ∈ B, we have g(b) ∈ P and h(g(b)) ∈ B. Note
b − h(g(b)) is sent to zero by g, so b − h(g(b)) = f(a). Then b = h(g(b)) + f(a) and
setting p = g(b) shows that A⊕ P −→ B is surjective. To see it is injective, suppose that
(a, p) 7→ f(a) + h(p) = 0. Then f(a) = h(−p) and so 0 = g(f(a)) = g(h(−p)) = −p. But
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once −p = 0, then f(a) = 0 and so a = 0 since f is injective. We have just shown the
desired injectivity which proves that A⊕ P −→ B is an isomorphism. One can then check
that f and g are the canonical projections.
Then HomR(B,M) ∼= HomR(A ⊕ P,M) and the surjectivity we desired is clear. Indeed,
given φ : A −→M , we have the induced map A⊕P −→M which sends P to zero and acts
on A by φ, and thus a map in HomR(B,M). It is not difficult to see that this map is sent
to φ by HomR(B,M) ∼= HomR(A⊕ P,M) −→ HomR(A,M).

(c) Show that the following converse to (b) holds. If whenever 0 −→ A −→ B −→ P −→ 0 is
exact then

0 −→ HomR(P,M) −→ HomR(B,M) −→ HomR(A,M) −→ 0

is also exact for every M , show that P is projective.

Solution: Suppose P satisfies the condition of (c). Choose any surjective map F
g−→ P

where F is free (for instance, choose generators of P and map a free module onto P sending
the basis elements to those generators). Let A denote the kernel of g with f : A −→ F the
induced map. Set M = A. Then we have that HomR(F,A) −→ HomR(A,A) is surjective.

In particular, there exists φ ∈ HomR(F,A) such that idA = φ ◦ f : A
f−→ F

φ−→ A. By the
argument above, F = P ⊕A and so P is a summand of a free module. The fact that it is
then projective follows immediately by the same sort of argument we did in 1.

(3) A R-module I is called injective if for every injective map of R-modules f : A −→ B and every
R-module map g : A −→ I, there exists a map h : B −→ I such that the following diagram
commutes:

I

A

g

OO

f
// B.

h

``

(a) Show that Q is an injective Z-module, as is Q/Z.

Solution: Suppose we are given A, B and I = Q and maps f and g as in the above
diagram. We need to show that g can be extended to h. Consider the set S of all pairs
(C, hC) where A ⊆ C ⊆ B and hC |A = g, in other words, extensions of g. We give this
set a partial order where (C, hC) ≤ (C ′, hC′) if C ⊆ C ′ and hC′ |C = hC . It is easy to see
that given any ascending chain {Cγ , hCγ}, that the union is also in S and hence by Zorn’s
lemma, there exists a maximal element (C, hC) in S. We will show that C = B which will
complete the proof.
Suppose C 6= B and choose b ∈ B \C. Consider C ′ = C+ 〈b〉Z ⊆ B. We will construct hC′

with (C, hC) ≤ (C ′, hC′). There are two cases. Either nb ∈ C for some integer 0 6= n ∈ Z
or not. We need to define hC′(b).
(i) If nb ∈ C then we define hC′(b) = hC(nb)/n. We verify that the induced map hC′

which sends c + mb 7→ hC(c) + mhC(nb)/n is well defined. In particular if n1, n2 are
nonzero integers such that n1b, n2b ∈ C, then n1n2b ∈ C as well. But now

hC(n1b)/n1 = n2hC(n1b)/(n1n2) = n1hC(n2b)/(n1n2) = hC(n2b)/n2
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More generally, suppose that c1+m1b = c2+m2b ∈ C ′. Then we see that (m1−m2)b =
c2 − c1 ∈ C. Then

hC′(c1 +m1b)
= hC(c1) +m1hC(nb)/n
= hC(c1) +m1hC(nb)/n+ hC(c2 − c1)− hC((m1 −m2)b)
= hC(c2) +m1hC(nb)/n− hC(n(m1 −m2)b)/n
= hC(c2) +m1hC(nb)/n−m1hC(nb)/n+m2hC(nb)/n
= hC(c2) + +m2hC(nb)/n
= hC′(c2 +m2b)

We need to also show it is a homomorphism so consider

hC′((c1 +m1b) + (c2 +m2b))
= hC′((c1 + c2) + (m1 +m2)b)
= hC(c1 + c2) + (m1 +m2)hC(nb)/n
= hC(c1) +m1hC(nb)/n+ hC(c2) +m2hC(nb)/n
= hC′(c1 +m1b) + hC′(c2 +m2b)

The multiplicative property is even easier so we leave that to the reader. But now we
have (C ′, hC′) ≥ (C, hC) and C ′ ) C, a contradiction to the maximality of (C, hC).
Hence C = B and we can set h = hC .

(ii) If nb /∈ C for any 0 6= n ∈ Z, then we define hC′(b) = 0 so that in general hC′(c+mb) =
hC(c).

We now need to handle Q/Z. But the proof is essentially the same. Indeed, the only place
we used that Q was Q was observing that if x ∈ Q then so is x/n. This property also
holds for Q/Z.

(b) Suppose that 0 −→ I −→ B −→ C −→ 0 is exact, prove that

0 −→ HomR(N, I) −→ HomR(N,B) −→ HomR(N,C) −→ 0

is exact for every R-module N if I is injective.

Solution: This is exactly the same as the proof of (b) above (just some arrows were
reversed to protect the innocent).

(c) Show that the following converse to (b) holds. If whenever 0 −→ I −→ B −→ C −→ 0 is
exact then

0 −→ HomR(N, I) −→ HomR(N,B) −→ HomR(N,C) −→ 0

is also exact for every N , show that I is projective. (This might be quite hard, I don’t
know a good way to do it without using something that we haven’t shown yet).

Solution: If we know that every module embeds into an injective module, then this is the
same as above (again reversing arrows).

(4) Suppose that R is a ring.
(a) If M is a projective R-module, show that there exists another module P such that M ⊕P

is isomorphic to a free module.

Solution: This is pretty easy. Choose F a free module with a surjection F −→ M . Now
let P be the kernel so we have a short exact sequence 0 −→ P −→ F −→ M −→ 0. In our
work in 2(b), we showed that F ∼= M ⊕ P .

(b) Suppose now that M ⊕N is a free module. Show that M and N are projective.
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Solution: Choose a surjective map f : A −→ B and a map g : M −→ B. We can extend
this map to a map g′ : M ⊕N −→ B which sends the summand N to zero. The fact that
M ⊕N is free implies it is projective and so the map h′ exists in the following diagram.

M ⊕N

g′

��{{
A

f
// B

Restricting g′ to M yields the result.

(c) Suppose that W ⊆ R is a multiplicative system. Suppose that M is a projective module.
Show that W−1M is also projective.

Solution: Since M is projective, it is a summand of a free module by (a). This property
is obviously preserved under localization.

(d) Suppose that M is a finitely presented module such that MP is projective as an RP -module
for each P ∈ SpecR (here the subscript P means localization at P , in other words inverting
W = R \ P ). Show that M is projective.

Solution: Suppose that A −→ B is surjective, the diagram above is easily seen to be
equivalent to showing that the induced map ρ : HomR(M,A) −→ HomR(M,B) is also
surjective. As we have seen, ρ is surjective if and only if ρP :

(
HomR(M,A)

)
P
−→(

HomR(M,B)
)
P

is surjective for every P ∈ SpecR. But since M is finitely presented,
Hom commutes with localization and so we can identify ρP with

HomRP (MP , AP ) −→ HomRP (MP , BP )

It is straightforward to see that this map is the application of HomRP (MP , ) to the
induced map AP −→ BP . The result follows immediately.

(5) Suppose that M is a finitely generated projective module over a local ring R. Show that M is
isomorphic to a free module. (This is true without the finitely generated bit too, but harder).

Solution: We choose g : Rn −→ M surjective where n is minimal. Of course, we also have

a map s : M −→ Rn such that g ◦ s : M
s−→ Rn

g−→ M is an isomorphism. Now set m to be the
maximal ideal of R. We notice that g/m : Rn/(m ·Rn) −→M/(m ·M) is an isomorphism, hence
so is s/m : M/(m ·M) −→ Rn/(m · Rn). But this implies that s is surjective. On the other
hand, certainly s is injective, hence an isomorphism.

(6) Suppose R is a local ring. If Rn ∼= Rm, show that n = m. Then prove the same result for
non-local rings.

Solution: Ok, this result actually isn’t true if R = 0 is the zero ring, but otherwise...
Consider an isomorphismRn −→ Rm. Modding out by a maximal ideal m we get an isomorphism

(R/m)n ∼= Rn/(m ·Rn)
∼−→ Rm/(m ·Rm) ∼= (R/m)m.

But R/m is a field and the result follows. I’ll let you fill in any remaining justifications.

(7) Suppose that R is a local ring and M and N are finitely generated R-modules. If M ⊗RN = 0
show that either M = 0 or N = 0.

Solution: We have a canonical surjective map M ⊗R N −→
(
M/(m ·M)

)
⊗R

(
N/(m ·N)

)
.

It is also easy to see that(
M/(m ·M)

)
⊗R

(
N/(m ·N)

) ∼= (M/(m ·M)
)
⊗(R/m)

(
N/(m ·N)

)
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since anything in m already acts as zero. Now suppose that M 6= 0 and N 6= 0. We see
that M/(m ·M) 6= 0 and N/(m · N) 6= 0 by Nakayama’s lemma. But they are now non-zero
R/m-vector spaces, so that the tensor product

(
M/(m ·M)

)
⊗(R/m)

(
N/(m · N)

)
is nonzero.

The result follows.

(8) Suppose that A is a ring and

0 −→ L
f−→M

g−→ N −→ 0

is a short exact sequence of A-modules. Show that if L and N are finitely generated A-modules,
then so is M . Use this to show that if M1,M2 ⊆ M are submodules such that M1 + M2 and
M1 ∩M2 are finitely generated, so are M1 and M2.

Solution: First suppose that n1, . . . nd and l1, . . . , le are generators of L and N respectively.
Choose m1, . . . ,md mapping to the ni via g. We want to show that {f(lj)}1≤j≤e ∪ {mi}1≤i≤d
generate M . Choose x ∈ M . Write g(x) =

∑d
i=1 rini and so consider x −

∑d
i=1 rimi ∈ M .

This might not be zero, but g of it is zero so that x−
∑d

i=1 rimi =
∑e

j=1 r
′
jf(lj). Solving for x

solves the problem.

(9) Prove the 5-lemma. In other words, suppose that

0 // M1

α1

��

a // M2

α2

��

b // M3

α3

��

c // M4

α4

��

d // M5

α5

��

// 0

0 // N1
a′
// N2

b′
// N3

c′
// N4

d′
// N5

// 0

is a commutative diagram with exact sequences as rows.
(a) If we suppose that α2 and α4 are surjective, and α5 is injective, show that α3 is surjective.
(b) If we suppose that α2 and α4 are injective, and α1 is surjective, show that α3 is injective.

Solution: I’ll only prove (a) as (b) is similar. Choose x ∈ N3. Let y = c′(x) be the image of x in N4.
Since α4 is surjective, there exists z ∈ M4 with α4(z) = y. Note α5(d(z)) = d′(y) = d′(c′(x)) = 0
by exactness of the bottom row. Since α5 is injective, this implies that d(z) = 0 and so there exists
w ∈M3 with c(w) = z by the exactness of the top row. We don’t know whether α3(w) is equal to
x. But notice that

c′(x− α3(w)) = c′(x)− c′(α3(w)) = y − α4(c(w)) = y − α4(z) = y − y = 0.

By exactness of the bottom row there exists v ∈ N2 such that b′(v) = x − α3(w). Since α2 is
surjective, there exists t ∈M2 such that α2(t) = v. Then we see that

x− α3(w) = b′(v) = b′(α2(t)) = α3(b(t)).

Solving for x yields
x = α3(b(t)) + α3(w) = α3(b(t) + w)

which proves that α3 is surjective as desired.
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