HOMEWORK #3 – MATH 538 FALL 2013

DUE FRIDAY, OCTOBER 4TH

- (1) Suppose that R is a ring and M and M' are R-modules. Prove that $M \oplus M'$ is flat if and only if M and M' are individually flat.
- (2) A *R*-module *P* is called *projective* if for every *surjective* map of *R*-modules $f : A \to B$ and every *R*-module map $g : P \to B$, there exists a map $h : P \to A$ such that the following diagram commutes:

- (a) Show that a free module is projective.
- (b) Suppose that $0 \to A \to B \to P \to 0$ is exact, prove that

$$0 \to \operatorname{Hom}_R(P, M) \to \operatorname{Hom}_R(B, M) \to \operatorname{Hom}_R(A, M) \to 0$$

is exact for every R-module M if P is projective.

(c) Show that the following converse to (b) holds. If whenever $0 \to A \to B \to P \to 0$ is exact then

$$0 \to \operatorname{Hom}_{R}(P, M) \to \operatorname{Hom}_{R}(B, M) \to \operatorname{Hom}_{R}(A, M) \to 0$$

is also exact for ever M, show that P is projective.

(3) A *R*-module *I* is called *injective* if for every *injective* map of *R*-modules $f : A \to B$ and every *R*-module map $g : A \to I$, there exists a map $h : B \to I$ such that the following diagram commutes:

- (a) Show that \mathbb{Q} is an injective \mathbb{Z} -module, as is \mathbb{Q}/\mathbb{Z} .
- (b) Suppose that $0 \to I \to B \to C \to 0$ is exact, prove that

$$0 \to \operatorname{Hom}_{R}(N, I) \to \operatorname{Hom}_{R}(N, B) \to \operatorname{Hom}_{R}(N, C) \to 0$$

is exact for every R-module N if I is injective.

(c) Show that the following converse to (b) holds. If whenever $0 \to I \to B \to C \to 0$ is exact then

$$0 \to \operatorname{Hom}_{R}(N, I) \to \operatorname{Hom}_{R}(N, B) \to \operatorname{Hom}_{R}(N, C) \to 0$$

is also exact for every N, show that I is projective. (This might be quite hard, I don't know a good way to do it without using something that we haven't shown yet).

- (4) Suppose that R is a ring.
 - (a) If M is a projective R-module, show that there exists another module P such that $M \oplus P$ is isomorphic to a free module.

- (b) Suppose now that $M \oplus N$ is a free module. Show that M and N are projective.
- (c) Suppose that $W \subseteq R$ is a multiplicative system. Suppose that M is a projective module. Show that $W^{-1}M$ is also projective.
- (d) Suppose that M is a *finitely presented* module such that M_P is projective as an R_P -module for each $P \in \text{Spec } R$ (here the subscript P means localization at P, in other words inverting $W = R \setminus P$). Show that M is projective.
- (5) Suppose that M is a finitely generated projective module over a local ring R. Show that M is isomorphic to a free module. (This is true without the finitely generated bit too, but harder).
- (6) Suppose R is a local ring. If $\mathbb{R}^n \cong \mathbb{R}^m$, show that n = m. Then prove the same result for non-local rings.
- (7) Suppose that R is a local ring and M and N are finitely generated R-modules. If $M \otimes_R N = 0$ show that either M = 0 or N = 0.
- (8) Suppose that A is a ring and

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$$

is a short exact sequence of A-modules. Show that if L and N are finitely generated A-modules, then so is M. Use this to show that if $M_1, M_2 \subseteq M$ are submodules such that $M_1 + M_2$ and $M_1 \cap M_2$ are finitely generated, so are M_1 and M_2 .

(9) Prove the 5-lemma. In other words, suppose that

is a commutative diagram with exact sequences as rows.

- (a) If we suppose that α_2 and α_4 are surjective, and α_5 is injective, show that α_3 is surjective.
- (b) If we suppose that α_2 and α_4 are injective, and α_1 is surjective, show that α_3 is injective.