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1. MoNDAY, AUGUST 26TH, 2013

1.1. Introduction to rings, ideals and homomorphisms. Commuta-
tive algebra is the study of commutative, associative rings with unity. Through-
out this class, every ring will be commutative, associative and with unity.
There are two main historical reasons to study commutative algebra:

o Algebraic Number Theory
o Algebraic Geometry

In algebraic number theory you might study rings like Z or Z[17] or Z, (p-
adics). Algebraic geometry studies geometric objects where the allowable
functions are polynomials. For example, in topology you study geometric
objects whose geometry is measured by continuous functions. In differential
geometry you study geometric objects and you use differentiable functions
to measure them. In algebraic geometry you study geometric objects using
algebraic functions (polynomials). In all these types of geometry, knowing
the functions is the same as understanding the geometric object.

It turns out that this is surprisingly powerful for algebraic geometry, every
ring is a ring of functions on some uniquely determined geometric object
(including the ring Z, as we’ll see later). This lets us interpret questions
from number theory in a geometric language and thus gain access to new
kinds of intuition. Furthermore, it allows you to translate number theoretic
questions to the case of polynomial rings, where things are frequently easier.

Polynomial rings with coefficients in a field (and quotients/subrings)
are generally easier to study than polynomial rings with coef-
ficients in Z, or some other ring of integers.
The main way we will study rings is through their ideals. Suppose R is
a ring. Note that if I, J are ideals then so is their intersection I N J, their
sum I +J={z+y|xel,yeJ}, their product [-J ={> "z -y |z €
I,y; € J}. But their union I U J is generally not an ideal.
Recall the following theorem:

Theorem 1.1. Suppose that J C R is an ideal. Then there is a bijection
between the sets:

{ideals of R containing J} <> {ideals of R/J}
1
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Proof. The forward — direction takes an ideal I to I/J. The inverse <
direction is just p~!(I) where I is an ideal of R/J. O

Definition 1.2 (Maximal ideals). Anideal I C R is called mazimal if I # R
and there is no proper ideal between I and R.

Lemma 1.3. An ideal I is mazimal if and only if R/I is a field.

Proof. The zero ring is not a field, so we can dispense with the case that
R = I. Recall that R/I is a field if and only if the only proper ideal is
(0). Of course, this is clearly equivalent to requiring that [ is maximal by
77?. O

Definition 1.4 (Prime ideals). An ideal I C R is called prime if I # R and
if xy € I, for z,y € R, implies that either x € I or y € I.

Lemma 1.5. An ideal I is prime if and only if R/I is an (integral) domain.

Proof. Suppose first that I is prime. If Z,7 € R/I (corresponding to x,y €
R) and T -y = 0, then = -y € I so either x € I and y € I by the primality
of I. Thusz=0ory=0.

Conversely, if I is not prime then there exist x,y € R with z -y € I but
z,y ¢ I. HenceZ -y=0¢€ R/I and R/I is not an integral domain. O

Example 1.6 (A ring of continuous functions). Suppose that C' is the ring
of continuous functions f : R — R. These form a ring under pointwise
addition and multiplication. Consider the set I = {f € C | f(0) = 0}.
This is an ideal of C' (the sum of two functions that vanish at the origin
vanishes at the origin, the product of a function that vanishes at the origin
and another function still vanishes at the origin). Is it prime or maximal?

Prime: If f-g € I, then 0= (f-¢)(0) = (f(0)) - (9(0)). Thus either f or
g vanish at the origin. In particular I is prime.

Maximal: In R/I, two functions are identified whenever they agree at
the origin (note f + 1 = g+ I if and only if f — g vanishes at the origin).
In particular, each coset of R/I looks like {constant} 4+ I. These have the
structure of the ring R, which is a field, and hence I is maximal.

On the other hand, the ideal J = {f € C | f(z) = 0 for all z € [0,1]}
is not prime and hence also not maximal. To see it isn’t prime, consider f
and ¢ continuous functions where f vanishes on [0,0.5] and g vanishes on
[0.5,1].

Another useful fact about prime ideals is the following.

Lemma 1.7. Suppose that I C R is a prime ideal and J,J' C R are other
ideals, then the following are equivalent.
(i) JCTorJ C1,
(i) JNJ C1,
(iii) J-J C1I.
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Proof. We will prove the equivalence of (i) and (ii) and leave the relation
with (iii) as an exercise (or you can do it as we did in class). Of course,
obviously (i) implies (ii). Now suppose that J N J" C I. Suppose J' ¢ I
and choose 2’ € J'\ I. We will show that J C I. Choose z € J. Then
zz' € JNJ' C I and hence either z € I or 2’ € I. But the latter situation is
impossible, so = € I and hence J C I. We have just shown that (ii) implies
(i). O

Example 1.8 (A polynomial ring). Consider R = R[z| where R is a field.
Consider the ideal I made up of all polynomials f such that f(0) = 0. It is
easy to see that I = (x). Furthermore I is both prime (for the same reason
as the ring of continuous functions) and maximal since R/I = R is a field.

Now consider S = R[z,y] and I is again the ideal made up of all polyno-
mials f such that f(0) = 0. In this case I = (x,y) is again both prime and
maximal. Note that J = (z) is prime since S/J = kly] (note, S/J can be
viewed as polynomials under the equivalence relation where f ~ g if they
agree along the line z = 0).

Finally, I leave it as an exercise to check that M = (zy) is the set of
functions that vanish on both the x and y axes.

2. WEDNESDAY, AucUSsT 28TH, 2013

2.1. Ring homomorphisms. We now review how ideals behave under ring
homomorphisms.

Definition 2.1. For us, a homomorphism of rings f : R — S always
satisfies f(1gr) = 1g.

This is justified by thinking about functions. We’ll see that all ring homo-
morphisms are basically pullbacks of functions from one topological space
to another. In this case, the constant function 1 should be pulled back to
the constant function 1.

Proposition 2.2. Suppose that f: R — S is a ring homomorphism. Then
f~1(J) is an ideal for every ideal J C S. However, if I is an ideal of R, then
f(I) need not be an ideal of S (unless f happens to be surjective). However,
the ideal f(I) generates is usually denoted by IS.

In the special case that f is injective, or better yet that R C S, f~1(J) is
frequently denoted by J N R.

Furthermore:

(a) If J C S is prime, so is f~(J).

(b) If J C S is mazimal, f~1(J) need not be.

(¢) If I C R is prime or mazximal, then J - S need not be, unless f is

surjective.
(d) If I C R, then I C f~1(19).
(e) If J C S, then J D (f~1(J))S.

Proof. This is left as an exercise to the reader. O
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2.2. The spectrum of a ring.

Definition 2.3 (Spec). For a ring R the (prime) spectrum of R, denoted
Spec R, is the set of all prime ideals of R. The set of all maximal ideals is
denoted by m- Spec R.

Example 2.4 (Spec of PIDs). o If k is a field, then Speck is a single-
ton, the ideal generated by zero.
o SpecZ is the set {(p) | p € Z~¢ prime} U {(0)}.
o For SpecC[z], since C[z] is a PID, we observe that the prime ideals
are just (f) where f is irreducible or zero. Since C is algebraically
closed, the irreducible elements are linear polynomials. In particular,

SpecR = {(x —a) |« € C} U{(0)}.

This can be identified with C unioned with another point (0).
o For SpecR[z], a similar analysis yields:

Spec R = {(z—a) | a € R}U{(z®+bz+c) | b, c € R, z*+ba+c is irreducible}U{(0)}.

In this case, Spec R[x] can be viewed as the set of conjugate pairs of
C, unioned with another point (0).

Our next goal is to give Spec R the structure of a topological space. Sup-
pose that I is an ideal of R. Then we set V() C Spec R to be the set of
prime ideals containing I.

Lemma 2.5. (a) If I,J are ideals, then V(INJ)=V(I)UV(J).
(b) If {In}xea is a family of ideals then V(3 \cp In) = Naea V(I2).

Proof. For (a), suppose that a prime ideal P contains IN.J. Then P contains

I or J by The reverse direction just reverses this.
For (b), suppose that P 2 >y, I, then obviously P contains every ideal

in the sum. For the reverse direction, if P contains each Iy then it contains
the sum. O

Hence we declare a subset Y C Spec R to be closed if Y =V (I).

Theorem 2.6. With notation as above, the closed sets form a topology on
Spec R. This is called the Zarsiki topology.

This very weak topology is very far from Hausdorff. Indeed, a point
(prime ideal) P € Spec R is closed if and only if P is a maximal ideal. On
Spec Z, ignoring the point (0), this is just the finite complement topology.

3. FrIDAY, AucusT 30TH

Proposition 3.1. Suppose that f : R — S is a ring homomorphism. Then
the map Q — f~1(Q), ¢ : Spec S — Spec R is continuous.
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Proof. Suppose that I is an ideal of R. We need to show that ¢~1(V (1))
is closed. The obvious thing to hope is that ¢=!(V (1)) = V(IS). Indeed,
suppose that P € V(I) C Spec R so that P O I. Suppose that ) € Spec S is
such that ¢(Q) = P (in other words, that f~1(Q) = P). Certainly P-S C Q
and so I - S C Q and thus ¢~ *(V (1)) C V(IS).

Now suppose that @ € V(IS) C SpecS so that @ 2 IS. Consider
P = f71(Q) = ¢(Q) and observe that P 2 I. Thus V(IS) C ¢~ *(V(I)). O

Example 3.2. Consider the map f : C[z] — CJ[t] which sends z to t? — 1
and fixes C. Let’s consider the induced map on the prime spectra (note that
both spectra are the same, copies of C with an extra zero point). Denote
the map ¢ : Spec C[t] — Spec C[x]. From here on out, since f is injective,
we can replace x by t2.

The zero ideal (0) is sent to the zero ideal (since ¢ is injective) so that
isn’t interesting. Now consider the prime ideal P = (t — a) C C[t]. We ask
what is ¢(P). There is a unique prime ideal Q C C[t? —1] with Q = PNCJt].
Since the prime ideals of C[z] = C[t? — 1] all look like ((t*> — 1) — 3), we need
(t? —1) — B € (t — ) (and this B is unique). Of course, t? — a? € (t — a)
and so we see that 1 + 8 = o? or in other words that 8 = o® — 1.

In conclusion, the point (t—a) (corresponding to ) is sent to (z—(a®—1))
(which corresponds to a®—1). If we identify the map ¢ with the map C — C
which sends « to a? — 1, then f is just the pullback of this morphism (on
polynomials).

Lemma 3.3. Given any P € Spec R, the topological closure €P} s equal
to V(P). In particular, the closed points of Spec R are ezactly the mazimal
ideals.

Proof. The smallest V' (I) that contains P is simply V(P). (Note if P € V (1),
then P D I, larger ideals give smaller V’s). The result follows immediately.
O

3.1. Plenty of prime ideals. Recall Zorn’s lemma, which we assume as
an axiom.

Theorem 3.4 (Zorn’s Lemma). Suppose that X is a non-empty partially
ordered set under < that satisfies the following condition. For every ascend-
ing chain ... < x)x < ... (for X in some indexing set A) there exists an
element z € X with z > every element in the chain. Then, X contains at
least one mazimal element.

Using this, we can show that rings have plenty of maximal ideals.

Proposition 3.5. Suppose that I C R is a proper ideal in a ring R. Then
there exists a maximal ideal of R, m O I.

Proof. Let X be the set of proper ideals of R which contain I, ordered
under inclusion. We claim that X satisfies the condition of Zorn’s lemma.
Obviously X is nonempty as it contains I. Further suppose that I C ... C
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Jyx C ... is an ascending chain (for A in some indexing set A). Let J =
Uisea /x- We claim that J is a proper ideal.

To see it is an ideal, suppose that z,2’ € J, so x € J, and 2/ € Jy,. By
symmetry we suppose that Jy C Jy so that z, 2’ € Jy,. Since Jy is an ideal,
x + 2’ € Jy C J which shows that J is closed under addition. If z € J and
r € R, then x € J) for some X\ and thus so is rz. Hence rx € J. This proves
that J is an ideal. Finally, since each Jy is proper, 1 is not in any Jy and
so 1 ¢ J. Hence J is also proper. It follows that Zorn’s lemma is satisfied
and our desired maximal ideal is guaranteed. ([

Corollary 3.6. Spec R always contains at least 1 closed point assuming it
18 mon-empty.

Proof. Combine [Lemma 3.3| and |Proposition 3.5| [l

3.2. Multiplicative sets and localization. Suppose that R is a ring.

Definition 3.7 (Multiplicative set). A multiplicative set W C R is a set
such that 1 € W and such that W is closed under multiplication.

Example 3.8. Suppose that R is an integral domain, then W = R\ {0} is
a multiplicative set. Alternately, if t € R, then {1,¢,¢2,#3 ...} is a multi-
plicative set.

Lemma 3.9. Suppose that P C R is a prime ideal, then R\ P is a multi-
plicative set.

Proof. If a,b € W := R\ P, then ab ¢ P and hence ab € W. Of course
1€ W since 1 ¢ P. O

Definition-Proposition 3.10. Consider the set Rx W under the following
equivalence relation. (r,w) ~ (r',w") if there exists v € W such that rw'v =
r'wv. We denote the equivalence classes under this operation by W~'R. For
simplicity, we write [(r,w)] € WR as r/w.

Then WLR is a ring with the following addition and multiplication.

(rfuw) + (' fu') = mete

ww!
(r/w)- (r'/w') =I5
Furthermore, there is a canonical ring homomorphism ¢ : R — W™IR
which sends r to r/1.

Proof. This is an exercise for the reader. ([

Obviously if R is an integral domain and W = R\ {0} then W~ 'R is a
field, the smallest field containing R (up to isomorphism).

4. WEDNESDAY, SEPTEMBER 4TH

We make a couple trivial (but useful) observations.

Lemma 4.1. (a) An element r/w € W™IR is equal to 0 = 0/1 if and
only if there exists v € W such that vr = 0.
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(b) If an element r/w € WIR is equal to 1 = 1/1, then vr € W for
somev € W.

Proof. For (a), if r/w = 0/1, then there exists v € W such that vr = Ow = 0.
The converse reverses this. For (b), if /w = 1, then vr = vw € W for some
velV. ]

Example 4.2. The map £ : R — W~!'R need not be injective in general.
For instance, if 0 € W, then W 'R is the zero ring.

For a slightly more interesting example, set R = k[z,y]/(xy) and fix
W = {1,z,2% 23,...}. Then observe that y/1 =0 € W~ 'R since 2y = 0-1.
It is in fact possible to show that W 1R = k[x, 2~ 1.

Example 4.3. If R is an integral domain and f € R is non-zero, the
W-IR = R[f~'] = R[z]/{xf —1). Hopefully you proved that this is true on
the homework.

Theorem 4.4 (Universal property of localization). Suppose that R is a ring,
W is a multiplicative set and f : R — S is a ring homomorphism such that
f(w) is invertible in S for each w € W. Then there is a unique factorization
of f making the diagram commute:

R S

=

W-IR

Proof. We prove the existence of such a factorization. Obviously we want
¢(x/w) = f(x)/f(w). There is the question of whether or not this is well
defined, so suppose that x/w = 2/ /w’ so that vzw’ = va'w for some v € V.

Then f(v)f(x)f(w') = f(v)f(2')f(w) and so since f(v), f(w) and f(w') are
invertible, we see that

f(@)/ fw) = f(2")/ f(w')
which proves that ¢ is well defined. O

Let us now describe what localization does to extension of ideals.

Lemma 4.5. Suppose that I C R is an ideal and W C R is a multiplicative
set. Then we can characterize the extension

IW™R) ={z/we W'R |z €I}
Proof. Obviously the containment O holds since (z/1) - (1/w) € I(W~'R)

for all x € I and w € W. For the reverse containment, suppose that

n

> (/1) - (1/w;) € I(W'R)

)
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is an arbitrary element. But

zn:(xz/l) (1/w;) = M c{z/wec W 'R|z eI}
P [Ty wi

Localization has a very controllable impact on the prime spectrum.

Proposition 4.6. Suppose that R is a ring and W C R is a multiplicative
set. There is a canonical bijection:

Primes P € Spec R ‘ ‘ .
{ such that PAW = 0. } <> {Pmmes in W R}.
The bijection is simply
P P(W'R).

Proof. Suppose P is such that PNW = (). First we show that P(W~!R)
is prime. Suppose that (r/w)(r’/w') € P(W~'R). This means that ;g, €
{x/w € W™IR | x € I}. Hence 12:[:/ = z/u for some z € P and u € W.
It follows that there exists v € W such that wvrr’ = vww’z. In particular,
worr’ € P. But u,v € P sorr’ € Psothatr € Porr’ € P. In the first case,
r/w € P(W™'R) and in the second r’'/w’ € P(W~!'R). This proves that
P(W™LR) is prime or equal to W~!R. Finally, if 1 = 1/1 € P(W~1R) then
vr € W for some v € W and = € P, which is impossible because vz € P
since P is prime.

Now suppose that Q@ C W~IR is prime, set P = ¢(~}(Q), a prime in
R. We will show that P(W~'R) = @ which will show that our proposed
bijection is at least surjective. Certainly P(W~'R) C @ so now choose
r/w € Q C WIR. Then (w/1)(z/w) = /1 € Q and so x € P. Hence
r/w € P(W™'R) which proves the other containment.

Finally, we prove injectivity. Suppose P, P’ € Spec R both have trivial
intersection with W and that P(W~'R) = P/(W~!'R). In particular, for
every x € P, there exists 2’ € P/ and w’ € W such that /1 = 2/ /w’. Then
vw'z = va’ for some v € W and so vw'x € P’. Note that then x € P’ since
vw’ € W and so not in P’. This proves that P C P’ which completes the
proof by symmetry. O

Corollary 4.7. The primes of R that do not contain x € R are in bijective
correspondence with the primes of R, = {1,z,22,...} ' R. In other words,

Spec R, corresponds to (Spec R) \ V().

Example 4.8. Suppose that R is a ring and (z1,22,...) = [ C R is an
ideal. We know Z = V(I) is a closed subset of X = SpecR so that
X \ Z is open. It turns out that X \ Z is covered by affine charts, X; =
Spec{1, x;,22,...} 'R = Spec R,, for each i, here X; = X \ V(x;). Indeed,
suppose that P € X = SpecR. If P isin Z = V(I), then P contains each
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x;, and so it does not correspond to any point in any of the X; by
On the other hand, if P is not in Z, then P does not contain some
x;, and so P corresponds to a point in Xj.

Note that X; N X; corresponds to Spec{l, z;z;, a:?x?, ... }7I'R.

Example 4.9. Suppose that P C R is a prime ideal and set W = R\ P.
Then W~!R has a unique maximal prime ideal, P(W~'R). In this case,
W~IR is denoted by Rp.

Definition 4.10. A local ring is a ring with a unique maximal ideal. For
example each Rp is a local ring.

Geometrically, local rings some how contain only the data of functions
passing through the unique maximal ideal (which is a point in the Spec).

5. FRIDAY, SEPTEMBER 6TH

5.1. Modules, localization of modules, and tensor products. We be-
gin by introducing tensor products. Suppose that R is a ring and that M
and N are R-modules.

Suppose we wish to multiply elements of m and n, formally, and consider
the resulting as an R-module. The tensor product lets us do exactly that.
In particular, the tensor product M ®gr N is generated by elements m ® n.
Note that in order for it to be a module, it has to be closed under addition,
and so we

(i) have to allow finite sums Y2¢_, m; @ n;.

We also want our multiplication to be distributive, and so we must have

(i) (m+m)@n=me@n+m'@nand m® (n+n') =men+men'.
Finally, we need to describe our action of R on this product. We have

(iii) (rm)®@n =m® (rn) = r.(m ®n). In other words, only elements of

R can move over the tensor product.

Elements of r of course must also distribute across sums:

(iv) iy mi @y = Y5, (rmg) @ ng

Formally, the tensor product M ®pg N is the free Abelian group generated
by all ordered pairs m®n := (m,n) € M x N modulo the relations generated

by properties (ii) and (iii) above. It is an R-module if one distributes R
across sums linearly as in (iv).

Proposition 5.1 (Universal property of the tensor product). If f : M @
N — L is a bilinear map of R-modules, then then there exists a unique
R-linear ¢ : M @ N — L such that ¢(m @ n) = f(m,n). Note that the
obvious map M & N — M ® N is bi-linear.

Now suppose that N = S is an R-algebra (a ring with map R — S).
Then we will frequently form the tensor product M ®p S. This is both an
R-module and an S-module (S acts on S and extends linearly).
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Definition 5.2 (Localization of a module). Suppose now that R is a ring,
W is a multiplicative system and M is an R-module. Then the localization
W=1M is the set of pairs (m,w) € M x W modulo the equivalence relation
(m,w) ~ (m/,w’) if there exists v € W such that vw'm = vwm/. Equiva-
lence classes [(m, w)] are denoted by m/w. W~'M becomes a W~ R-module
with the following addition and W' R-action.

_ / Jr /
m/w+m' /v = e

(r/w).(m/w) = rm/(ww')

Proposition 5.3. Suppose R is a ring, M is an R-module and W is a
multiplicative system. Then:

WR®r M =~ W™ IM.

even as W1 R-modules.

6. MONDAY, SEPTEMBER 9TH

Proof of [Proposition 5.3. The tensor product W—'R®pr M is very simple as
tensor products go. Indeed, notice that

(7“/111)®m)+(r:/w'®m')
= (;1;0/ ®@m)+ (&5 @m')
= (qfw, @ (rw'm)) + (= ® (r'wm/))

ww’

= == ® (rw'm+r'wm’).

It follows that every element of W ~'R®pr M can be expressed as %@m. Since

it is easy to see that the map W 'R® M — WM, (r/w,m) — rm/w is

bilinear, by the universal property of the tensor product, we have a map
6 WIReM — WM.

We need to show it is an isomorphism. Certainly it is surjective, so now
choose £ ® m € W~'R and suppose that ¢(+ ® m) = m/w = 0. Hence
there exists v € W such that vm = 0. But then

1
*®m=i®m:—®vm:—®0:().
w ) WU WU

Checking that the map is a W~!R-module homomorphism is routine and
will be left to the reader. O

There is one really useful fact about localization of modules.

Lemma 6.1. Suppose that ¢ : M — N is an injective map of R-modules
and W C R is a multiplicative system, then the induced map

¢ WM —WIN

is also injective. Equivalently the induced map, W 'RQrM — W 'RQrN
18 injective.
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Proof. Ok, what do I mean by ¢'? ¢'(m/w) = ¢(m)/w (what else could it
be?) Suppose that ¢'(m/w) = ¢(m)/w = 0. Hence there exists v € W such
that vo(m) = 0. But vep(m) = ¢(vm) so that vm = 0 since ¢ is injective.
But then 0 = m/v € W1 M. O

It is actually really uncommon that tensoring preserves injectivity (as
we’ll see in the next section). Modules L such that if M — N is injective,
then sois L® M — L ® N are called flat. Thus W~'R is a flat R-module.

What we have just done is a great example of a special type of tensor
product called extension of scalars. Suppose M is an R-module, R — S is
a ring homomorphism, and we really want to make M into an S-module. The
most obvious thing to do is M ®p S. Then S can act on this tensor product
on the right. For example, Rlz] ®g C = C[z]. Likewise Z[z| ®z (Z/nZ) =
(Z/nZ)[z].

7. ON THE GEOMETRY OF TENSOR PRODUCTS

Theorem 7.1. Suppose that k is an algebraically closed field, and that R and
S are two finite generated k algebras (in other words, R = k[xy,...,xpn]/]
and S = kly1,...,yn]/J. Then there is a natural bijection between m-Spec RQy,
S, the mazimal ideals of the ring R ®y S, with (m-Spec R) x (m-Spec .S).

Proof. Consider maps f: R — R®; S and g : S — R ®; S which sends
r—r®1and s — 1 ® s respectively. This gives us a map (f7 x g7) :
m-Spec(R ®, S) — (m-Spec R) x (m-Spec S). We will call this map ¢. We
need to show it is bijective. We will use the letter A to denote the ring
R®y S.

First we prove a lemma.

Lemma 7.2. If m is a maximal ideal of R and n is a maximal ideal of S,
then ¢ := (f(m)) + (g(n)) = mA + nA is a mazimal ideal of A.

Proof. Consider the map f : R — A and apply the functor R/m ®p e, we
obtain

f i R/m — R/m@p(R&,S) = (R/m@RR)®pS = R/m@pS = S = A/(mA)

This map is injective because S is a free k-module (in fact every module over
a vector space is free). Now consider the map pog: S — A — A/(mA)
which is an isomorphism by above and tensor with e ®¢.S/n and obtain the
isomorphism

TS/ A/ (mA) ®s S/n > (R/m @y S/n) 2k A/(mA +nA)

Thus A/(mA 4+ nA) is a field and so mA + nA is maximal. Now we return
to our main proof. O

We continue our proof of We first prove the injectivity so
suppose that a and b are maximal ideals of R ®j S and that ¢(a) = ¢(b)
(so f~(a) = f~1(b) and likewise g “La) = _l(b)). Consider the ideal
(f(FH@) + (g(g~ (@) = (f(F71(b))) + (g(g~'(b))). This is a maximal
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ideal, by the Lemma, contained inside both a and b and so the injectivity
of ¢ is done.

Now we prove the surjectivity of . But this is easy since given m and n
and constructing ¢ as in the lemma, it is clear that f~!(c) 2 m (and so we
must have equality) and likewise for n. U

Example 7.3. When not working of finite type over an algebraically closed
field, the above theorem fails. For example, C is a finitely generated R-
module, and SpecC is a singleton. However, C ®g C has two points in its
prime spectrum (this kind of behavior can also happen in number theoretic
settings).

Example 7.4. k[z] ® k[y] = k[z,y] (this is easy to see explicitly as well).
Note that the Cartesian product only works for the maximal ideals.

8. MONDAY, SEPTEMBER 16TH
We have a universal property for a tensor product of rings as well.

Proposition 8.1. Suppose that A is a ring and that R and S are A-algebras
(rings with maps A — R, A — S). Then for every other ring C with maps
f:R— C and g: S — C making the diagram commute

S+———A

there exists a unique map of rings ¢ as above making the diagram commute.

Proof. This follows easily from the other universal (bilinear) property for
modules we already mentioned. ([l

If we dualize the diagram, we have the following picture.

SpecC

Spec(R®4 S) » Spec R

|

Spgc S ——— SpecA

The dual of the universal property is exactly the universal property of the
fiber product for topological spaces (this works well for the m-Spec when we
are finite type over an algebraically closed field A, in which case the fiber
product is all pairs whose image is the same in Spec A).
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8.1. Exactness of tensor products and the Hom functor. We have
just seen that localization of modules (ie tensoring with the localized ring)
preserve injectivities of modules. This is NOT true for arbitrary tensor
products.

Example 8.2. Indeed, consider the injection Z X2, 7 and let us tensor it
with ®7Z/27. Then we have the map

(8.2.1) Z w5222 Y22, 7.6, 707,

Note that first Z®yzZ/27 = 7./27Z. Let’s convince ourselves of this explicitly,
indeed each a®b = 1®ab and so we can represent each element of the tensor
as an element of Z/27. Of course, there is a surjective map Z ®yz 2 /27 —
7./27 (coming from the universal property of the tensor product) and the
isomorphism follows.

We return to the map and observe that 1® 1 issent to2®1=1® 2 =
1® 0 = 0. In particular, the map from is the zero map and hence

not injective.
Tensor products do preserve a lot of other properties though.

Definition 8.3 (Short exact sequences). Suppose that L, M, N are R-
modules. A short exact sequence, denoted

0LS5MYS N0

is a pair of maps ¢ : L — M and ¢ : M — N such that ¢ is injective, ¢ is
surjective and ker ) = im ¢.

For example, 0 — Z X207 Z/27 — 0 is a short exact sequence.

Example 8.4. The canonical example of a short exact sequence comes from
picking I C R an ideal and forming;:

0—I—R— R/I —0.
Short exact sequences are special cases of exact sequences.

Definition 8.5 (Complexes Exact sequence). Suppose that {C;} is a col-

lection of R-modules with maps Cj & Cit1, written diagrammatically as:

ce ¢i_2‘ Ci—l $i1 Cz ﬂ) Cz'—i-l —>¢i+1 CH_Q —>¢i+2 RN

This is called a (cochain) complex if ker ¢; 2 im ¢;—1 for all 7. It is called
an exact sequence if ker ¢; = im ¢;_1 for all 4.

As we have already seen, tensor products do not preserve exact sequences
(since they don’t preserve injections, which can be written as exact sequences
0 — M — N). However, the following is true.
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9. TUESDAY, SEPTEMBER 17TH

Proposition 9.1. If0 — L & M 5% N — 0 is an evact sequence and T
1s another R-module, then

LopT S MorT S NopT — 0
1s also exact.

This proposition asserts that ® is right-exact (it takes short exact se-
quences to sequences that are exact on the right).

Proof. 1t is easy to see that 3 is surjective, indeed if n ® t € N ® T, then
since M — N is surjective, there exists m € M such that b(m) = n. Hence
m®t—n®tand it follows that § surjects.

We now need to show that ker 5 = ima. Let C' = im «, we already know
that C C ker  and so we have amap v: (M ®rT)/C — N ®rT. It is
sufficient to show that this map is injective. Define a map

O‘:N@RT—)(M@RT)/C

by n ®t — bi(n) ®t where bi(n) is any m € M with b(m) = n and ®
denotes the image after modding out by C. We need to show that o is
well defined. Suppose that m and m’ are such that b(m) = b(m') = n then
we need to show that m ® t = m’/ ® ¢ (this is the same as showing that the
obvious bi-linear map from the universal property is well defined). But since
b(m) = b(m'), there exists | € L such that a(l) = m — m’. Therefore since
a(l) @t € C, we see that (m —m’) ®t =0 and m ® t = m/ ® t. This shows
o is well defined. Now, (M @ T)/C 5 N ®@rT % (M @ T)/C sends
m ® t back to itself. It follows that ~ is injective. O

We'll see another proof later once we understand the relation of ® with
Hom. Indeed, at least as fundamental as the ® functor is the Hom func-
tor. Suppose that M, N are R-modules. Then Hompg(M, N) is the set of
R-module homomorphisms M — N. It is an R-module since r.¢ is defined
by (r.¢)(m) = r¢(m) = ¢(rm). In other words, r can act on either the
domain or the codomain, it doesn’t matter. Now suppose that n: L — M
is a module homomorphism. Then we have an induced R-module homomor-
phism:

® : Homp(M, N) — Hompg(L, N)
defined by (®(f)) (1) = f(n(1)).

On the other and, of 6 : N — O is an R-module homomorphism, then
obtain:

U : Homp(M, N) — Homp(M, O)
which is defined by (®(f))(m) = §(f(m)).
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Proposition 9.2. The functors Hompg(e, N) and Hompg (M, e) are both left-
exact. In other words, if

0——>A1>B£>C——>O

is an exact sequence of R-modules, then

0 — Homp(C, N) Ls Homp(B, N) L5 Homp(A4, N)
is exact and

0 — Homp(M, A) 25 Homp(M, B) £ Homp(M, C)
is also ezxact.

Proof. For the first sequence we handle the injectivity of ¢’ first. Suppose

that ¢ € Homp(C, N) and that B % C % N is zero (ie, the image of ¢ in
Hompg(B, N) is zero). But then since g is surjective, we must have ¢ zero as
well. Next we handle ker f/ C im ¢’. Suppose that ¢ € Hompg(B, N) is such

that A L B % N is zero so that there is P :C = BJ/A— N. Consider the

composition B % B JA YN , obviously this is the same as 1) and so ¢'(¥) =
1) which shows that ker f/ D im ¢’. Finally we need to show ker f’ D img’.
Choose 6 € Hompg(C, N) and consider ¢'(#) = 6 o g € Hompg (B, N). Finally
we consider f'(¢'(#)) =0ogo f € Homg(A,N). But go f is zero, and thus
so is f'(¢'(0)).

We now consider the second exact sequence. First suppose that ¢ €
Hompz (M, A), then f"(¢) = foo, ie M % A L B. Since f is injective, if ¢
is nonzero, then f o ¢ = f”(¢) is also nonzero. Next we show that im f” C
ker g”. Suppose that ¢ € Hompg(M, A), then f"(¢) = fod. ¢"(f"(d)) =
go fo¢. Since go f =0, ¢"(f"(¢)) = 0 which proves what we wanted.
Finally we show that ker¢” C im f”. Suppose ¢y € Homp(M, B) is such
that ¢”(¢) = g 0¥ = 0. In other words

MY BY o

is zero. Since the kernel of g is equal to f(A), we see that ¢(M) C f(A).
But f is injective and so we have a factorization of

v:Mh Al B

But then ¢ = f”(n) which completes the proof. O
Remark 9.3. Note that in the first part of the proof, we didn’t need that f
was injective. In the second, we didn’t need that g was surjective.

10. WEDNESDAY, SEPTEMBER 18TH

Example 10.1. We compute some Homs, first over the ring Z. Then

HomZ(Q, Z) =0
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since if ¢(a/b) # 0, then ¢(c- (a/b)) = cp(a/b) where all terms are integers.
This yields a contradiction if ged(b,¢) = 1 with b > 1.
Also note that
Homy(Z/5,7Z) =0
since the image of any such homomorphism is a finite subgroup of Z, and
the only such subgroup is {0}.
Now we work over a polynomial ring, R = k[x,y]. First observe that

HOIHR(<337 y>7 <337 y>)

contains the identity morphism, and all multiples of this morphism. It
turns out these are the only ones (which can be verified via Macaulay?2, or
cleverness). In class, we verified that we can’t send x +— y and y — x and
keep it a R-module homomorphism since then

2® = 2d(y) = d(zy) = d(yz) = yo(z) = y*.
Likewise
Homp({x,y),R) 2 R

where the inclusion homomorphism is sent to 1 (and all the others are just
multiples of it).
Finally,

Hompg(R/(z,y), R) = {0}

since if z € R/(x,y),R) = k is such that ¢(z) # 0, then 0 # z¢(z) =
¢(x.2) =0 since zz € (z,y).

Proposition 10.2. A sequence A Iy B ¢ 50 s exact if and only if

0 — Homp(C, N) Ls Homp(B, N) L5 Homp(A4, N)
is exact for every R-module N.

Likewise, 0 — A ENYTIER C is exact if and only if

0 — Homp(M, A) 25 Homp(M, B) s Homp(M, C)
is exact for every R-module M.

Proof. We have already done both of the (=) directions. So first suppose

that 0 — Homp(C, N) <5 Homp(B, N) EiR Homp(A, N) is exact for every
R-module N. Set N to be the quotient module C'/g(B) and let ¢ : C — N
be the canonical surjection. If g is not surjective, then v is nonzero and
hence ¢'(1)) = 1 o g is non-zero (but that obviously is zero).

Next suppose that ker f/ = im g’ for every N. We’d like to show that
ker g = im f as well. Since f'og’ = 0, by setting N = C we have f'og’oid¢c =
0. But this is just g o f. Finally, set N = B/im(A). Then suppose that
¢ € Homp (B, B/im(A)) satisfies f'(¢) = ¢ o f' = 0. In other words

AL B2 B/im(A)
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is the zero map. Then there exists ¢ : C = B/im(A) — B/im(A) factoring

¢. It is easy to see that ¢'(¢) = ¢ which completes this part of the proof.
For the second part the proof is much easier, we begin by setting M = R,

then the exact sequence of Homs becomes simply 0 — A — B — C which

is also exact. [l

We spent the rest of the time in Macaulay?2.

11. FRIDAY, SEPTEMBER 18TH
The functors of Hom and tensor are closely related.

Theorem 11.1 (Hom —® adjointness). If L, M, N are R-modules, then
there is an R-module isomorphism:

HOIHR(L Qr M, N) = HOmR(L, HOmR(M, N))

Proof. Given ¢ € Hompg(L,Hompg(M,N)) we need to construct ®(¢) €
Hompg(L,Homp(M, N)). We an action of ¢ on elements of L @ g M. Given
> 1; ® m; we define

oD _liwmy) = (6(l:)(mi)

Note that each ¢(l;) € Homg(M, N) so it makes perfect sense to act upon
m;. Thus we have defined ®.

To go the other way, suppose that ) € Homg(L ®r M, N), and we will
define ¥(¢) € Homp(L, Hompg(M, N)). So choose | € L. Then ¥(¢)(l) =
(Il ® __) where the blank is to be filled in from M.

We should verify that o ® and ® o ¥ are the identities. But I will leave
this to you (I think we’ll do one direction as a class). O

Now we discuss a proof of the right exactness of ® via the left exactness
of Hom.

Lemma 11.2. @M is right exact for any R-module M.

Proof. We suppose that 0 — A — B — C — 0 is exact and we want to
show that
AQrM — BQrM — CQr M — 0

is exact. It is sufficient to show that
0 — Homp(C ®p M,N) — Homp(B ®r M, N) — Hompg(A ®r M, N)
is exact for any R-module N. But that is exact if and only if
0 — Homp(M,Hompg(C, N)) — Homp(M, Homp(B, N)) — Homp(M,Hompg(A, N))

is exact by the adjointness of tensor and Hom (we also need to know that the
adjointness isomorphism is compatible with morphisms in the M wvariable,
but it is, I won’t check it though). But this is exact if

0 — Homp(C,N) — Hompg(B,N) — Hompg(A, N)

is exact, which follows if A — B — C' — 0 is exact (which it is). O
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Finally, I want to explain a key relation between tensor and Hom. Suppose
that M, N, L are R-modules. Then it is easy to see that there is an R-module
homomorphism

HOmR(M, N) — HOmR(M Rr L, N ®g L),

simply send (¢ : M — N)®1I to the induced morphism M ®r L — N ®prL.
In general this is not an isomorphism. There is another key variant of this,
suppose that L is now an R-algebra, then

M®rL — N®grL
is a map of L-modules. In particular, we get a map
Homp(M,N) — Hom(M ®r L, N ®g L).
If we tensor the left side of the map by L, we get an L-linear map
Homp(M,N)® L — Homp(M ®r L, N ®g L).
Definition 11.3. Recall an R-module L is called flat if e @z L is an exact

functor (ie, it preserve injectivity). Remember W 'R is a flat R-module for
any multiplicative set W.

Proposition 11.4. If M is a finitely presented R-module (meaning it can
be generated by finitely many elements subject to finitely many relations), N
is any R-module and S is a flat R-algebra (in particular, it is an R-algebra
which is flat as an R-module), then

Homp(M,N)®r S — Homg(M ®r S, N ®gr S)

18 an isomorphism.

Proof. Since M is finitely presented, we can write an exact sequence
R" —R"— M —0

Since S is flat, the functors Homp(e, N) ® g S and Homp(e ®r S, N @ 5)
are both left-exact. Hence we have the following diagram

0 —>H0mR(M, N) QR 5’4>HomR(Rm,N) RR S—>H0mR(Rm,N) ®Rr S

/| | |

OHHOHIS(M Qr S, N ®p S) HHomS(Rm Qr S, N ®pr S) —)Homg(R” RrS,N ®p S)

OHHoms(M Qr S, N ®pr S) 4)Homg(sm,N®R S) 4>Hom5(S”,N®R S)

The bottom row of isomorphisms just comes from the fact that R°®pzS = S®.

It is now straightforward to verify that the maps g and h are isomor-
phisms. Indeed, they are both homomorphisms from free modules and so
you just need to decide where each basis element goes in each case (note
Homp(R®, M) = M® as well). It follows that f is an isomorphism as well
(it is two different ways to interpret the kernel of the same map). O
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12. MONDAY, SEPTEMBER 23RD

Using the fact that localization can be written in terms of (flat) tensor
product, we have that:

Corollary 12.1. Suppose R is a ring, A is a finitely presented R-module
and B is any R-module. If W C R is any multiplicative set, then

W~ Hompg(A, B) = Homy—15(W 1A, W™1B).
12.1. Nakayama’s Lemma. We now switch gears entirely.

Theorem 12.2 (The determinant trick). Suppose M is an R-module gen-
erated by n-elements and ¢ € Homg(M,M). If I C R is such that ¢(M) C
I - M then there is a relation of the form

(12.2.1) P+ a1+ 4 an_1¢ 4 an -idy = 0 € Homp(M, M)
where a; € I°.

Proof. Write M = (m1,...,my). We can write each ¢(m;) = > 1, aiym;.
In other words:

n
> (635 ¢ — ay - ida)(my) =0 € M
j=1
holds for each i (where d;; is the Kronekcer delta). We view this is a square
matrix

A = [(0i5 - ¢ — aij - idn)]
and note that
mi
ma

A =0.

My,
Let B be the classical adjoint matrix of A, and recall that BA = det(A)I,xn
so that
det(A)(m;) =0€e M
for each m;. Since these generate M we see that det(A) = 0 € Hompg(M, M).
Expanding out the determinant gives the result. O

13. WEDNESDAY, SEPTEMBER 25TH

We first spent a fair amount of time discussing the homework.
We now prove Nakayama’s lemma (in fact, all of the results below are
frequently referred to as Nakayama’s lemma).

Theorem 13.1 (Nakayama’s Lemma 1). Suppose that R is a ring, I C R
is an ideal and that M is a finitely generated R-module. If M = I - M then
there exists x € R such that x-m =0 for allm € M and that x —1 € I.
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Proof. Set ¢ = idp. Then by the determinant trick, ¢(M) = M C I - M
and so there exist a; € I* such that

idy +aridy +... 4+ apidpyy =0

In particular, z = (14 a; +. ..+ ay) kills every element of M. Furthermore,
certainly z — 1 € 1. O

Corollary 13.2 (Nakayama’s Lemma 2). If R is local, M is an R-module
and I C R is a proper ideal such that M =1 - M, then M = 0.

Proof. Since I is proper, I C m where m is the unique maximal ideal of R.
Since x — 1 €C m, we see that x is not contained in m and hence is a unit.
But then am = 0 for all m € M implies that M = 0. (]

Corollary 13.3 (Nakayama’s Lemma 3). Suppose that (R,m) is a local
ring. If f : M — N is a map of R-modules with N finitely generated. Then
f s surjective if and only if the composition

f:M— N — N/(m-N)

18 surjective.

14. FRIDAY, SEPTEMBER 27TH
We prove Nakayama’s lemma version 3.

Proof. Certainly if f is surjective so is f. Conversely suppose that f. The
fact that f is surjective implies that f(M) + (m- N) = N. It follows that
m - (N/F(M)) = (m- N + f(M))/f(M) = N/(M). Thus N/f(M) = 0 and
so f is surjective. O

Corollary 14.1 (Nakayama’s Lemma 4). Suppose that (R, m,k = R/m) is
a local ring, M is a finite R-module and M = M/(m - M). Then M is a
finite dimensional vector space of dimension n. Furthermore,
(a) Ifmy, ..., my, are a k-basis for M, then any set of pre-images my, ..., My
form a minimal generating set for M.
(b) Every minimal generating set for M is obtained in this way, and so
they all have n elements.

Proof. We begin with the proof of (a). It is easy to see that the m; are a
generating set, indeed consider the map R™ — M which sends e; to m;.
Then this map is certainly surjective by Nakayama’s Lemma 3. We just
need to show that this set is minimal. However, if it was not minimal, we
could remove an element, and still have a generating set. Without loss of
generality let us remove m,,. But then R"~! — M would be surjective and
thus so would k"1 = (R/m)"~! — M, which is impossible since M has
dimension M.

Now suppose that myq, ..., m; is another generating set for M with [ > n
(the case of I < n isruled out by the argument immediately above). It follows
that some set of n elements within {my,...,m;} span M, say my,...,m
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span the vector space M. Hence my, ..., m, also generate M and so every
minimal generating set of M is obtained this way. O

14.1. Noether normalization and finite extensions. Our goal is to
prove the following theorem.

Theorem (Noether normalization). Suppose that k is a field and that R
is an integral domain which is also a finitely generated k-algebra. Then

there exists algebraically independent elements ai,...,a; € R such that
klai,...,a;) € R is a polynomial ring over k. Furthermore, R is a finitely
generated klay, ..., a;]-module.

15. MONDAY, SEPTEMBER 30TH

Suppose that R is a ring of finite type over a field. Frequently one wishes
that R is a polynomial ring (but we only know it is a quotient of a polynomial
ring). One way to try to fix this is with a tool called Noether normalization.
First we need a couple definitions.

Definition 15.1. Suppose that elements ry,...,r, are elements in a k-
algebra R. We say that {r;} are algebraically independent if the k-algebra
map

k‘[Xl,...,XN] — R

sending X; to r; is injective. Less formally, {r;} are algebraically indepen-
dent if there are no non-trivial relation between them.

Definition 15.2. Suppose that A C B is an extension of rings. Then we
say an element b € B is integral over A if b" + A" Y. 4ab+ag=0
for some a; € A. If every element of B is integral over A then we say that
B is integral over A.

Lemma 15.3. If y € B is integral over A, then Aly| is a finitely generated
A-module.

Proof. If the monic relation on y has degree d, then 1,v,...,y% ! form a
generating set for Afy| over A. O

And now a lemma.

Lemma 15.4. Suppose that A is a domain and finitely generated k-algebra
(generated by yi,...,yn) is such that for some 0 # F € k[Yy,...,Y,] we
have F(y1,...,yn) = 0. Then there exist elements z1,...,zp—1 Such that yp
is integral over B = klz1,...,2,—1] C A and A = Bly,].

Proof. 1 only prove this claim in the case that k is infinite, for a proof in the
general case see any of your usual texts.

We will set z; = y; — oy, for some a; € k (to be chosen momentarily).
Then

F(Zl + a1y, .5 2n—1 +an—1yn—17yn) = F(ylan . 7yn) =0.
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Consider the polynomial G(z1,...,2n-1,Yn) = F(z1 + c1y1,.--,2n-1 +
Op—1Yn—1,Yn). If F has degree d, then

G=H(ai,...,oan 1,1)ye + lower y,-degree terms.

It is easy to see that H is not the zero polynomial.
Claim 15.5. There exist ay,. .., on—1 such that H(aq,...,an-1,1) # 0 € k.

Proof of claim. We use the fact that k is infinite here and proceed by in-
duction on n — 1. Write H(Y1,...,Y,_1,1) as a polynomial in the variable
Ylv

HY1, .. Yoo1,1) = fr,(Ya, oo, Y1) - Y 4 fo(Yay oo Y)Y

Note that f;,(Ya2,...,Y,—1) is a polynomial in fewer variables, so by in-
duction for some choice of Yo = ao,...,Y,-1 = apn_1, this polynomial is
non-zero. Choosing these values, we then have a non-zero polynomial in Y;
which can have at most finitely many root. This allows us to choose Y1 = a3
as well. This proves the claim. ([

We return to the proof of the main theorem. Choosing the «; as in the
claim we then have that

G= )\yg + lower y,-degree terms

for some non-zero A € k. Dividing by A proves that y, is integral over
k:[zl,...,zn_l]. O

Theorem 15.6 (Noether normalization). Suppose that k is a field and
that R is an integral domain which is also a finitely generated k-algebra.
Then there exists algebraically independent elements ai,...,a; € R such
that klai,...,at] € R is a polynomial ring over k. Furthermore, R is a
finitely generated klay, ..., at]-module.

Proof. Choose x1,...,z, to be a generating set for R as a k-algebra. We
proceed by induction on n. If x1,...,x, are algebraically independent over
k, we are done. So we suppose not and apply the lemma. We see that we
can choose linear combinations ¥1,...,Yn_1,Yn = T of the x; so that y, is
integral over yq,...,y,—1. In particular, R is a finite k[y1, . . ., yn—1]-module.
We continue in this way until we end up with an algebraically independent
set. Note that a chain of finitely generated modules is a finitely generated
module. O

Now, let us talk a little bit more about the formalities of finite maps.

Lemma 15.7. Suppose that A C B is a ring extension. Choose b € B.
Then b is integral over A if and only if A[b] is a finite b-module. Even more,
if B is a finite A-module, then every element of B is integral over A.

Proof. If bis integral then it satisfies a monic relation b” +a,_1b" ' +. . .+ao,
and so obviously 6”71, ... b', 1 generate A[b] as an A-module. Conversely,
suppose that B is a finitely generated A-module with n-generators. We need
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to show that each b € B is integral over A. We use the determinant trick.

Consider the A-module homomorphism B % B which we denote by ¢.
Then we see that the image of this map contains A - B = B. Hence there
exists a1, ...,a, such that ¢" + a1¢" ' + ...+ agidg = 0. But noting that
¢ = b-idp, we can factor out idp and so obtain

(0" +...+a1b' + ap) idp = 0 € Homu(B, B).
But then b + ...+ a1b' + ap = 0 € B, which proves the theorem. O

Lemma 15.8. Suppose A C B is a ring extension and that C C B is the set
of elements of B which are integral over A (note elements of A are integral
over A, x —a is a monic polynomial). Then C is a ring. (Of course, C' need
not be a finite ring extension of A.

Proof. Suppose that b,b’ € C. Then obviously b is integral over A so that
A[b] is a finite extension of A. Furthermore, A[b,] is a finite extension of
A[b]. Thus A[b, V'] is a finite extension of A. Hence b-b’ and b+’ are integral
over A as desired. O

16. WEDNESDAY, OCTOBER 2ND

We did the going up theorem in class.

17. FrRIiDAY, OCTOBER 4TH

17.1. The Nullstellensatz and m-Spec of polynomial rings. Previ-
ously we have talked about V(J). If k = k is an algebraically closed field
and J C k[z1,...,zy], then V(J) is the subset of k™ where all the functions
of J vanish. On the other hand, given any subset Z C k" we define I(Z) to
be the set of functions in k[x1,...,z,] which vanish at every point of Z.

Theorem 17.1. Let k be an algebraically closed field and J C k[z1, ..., x,).
(a) If J # k[x1,...,xy,] then V(J) # (.
(b) I(V(J)) =VJ.
(¢) VINJ)=V({I)UV(J)
(d) VI+J)=V({I)NnV(J)

Proof. For the first part, choose m O J a maximal ideal. Then m = (x; —
a1, ..., Ty — Q) from what we’'ve seen before (see our work on the m-Spec
of tensor products). Then every function of J vanishes at (aq,...,ap).

Now for the second part, suppose f € I(V(J)), hence f(Q) = 0 for all
Q € V(J). We consider the larger ring S = k[z1,...,z,,Y]. Consider J' =
J-S+(fY —1). Consider (aq,...,an,b) € V(J'). Then f(a,...,a,) =0
and also bf(ai,...,a,) —1 = 0. In particular, V(J') = (). Then J =
klz1,..., oy, Y]. Hence we can write

l

L=go-(fY =1)+> gi-hi

=1
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where g; € S and h; € J.
Choose m at least as large as the Y degree of all the g;. Multiplying
through by f™ gives us

l
f=Golwr,. o wn, fY) - (fY = 1)+ Y Gi(wr,. .o an, fY) - 1y
=1
for some G; (obtained from g;). Modding out by fY — 1 (ie, substituting
fY =1) gives us

l
fm:ZGl(xlv"'axn71)'hi eJ
=1

It follows that f € v/.J so that I(V(J)) € v/J. But obviously v/.J C I(V(J))
and so the result is proven. O

18. MoNDAY, OCTOBER 7TH
We complete the proof of the Nullstellensatz.

Proof. For the third part, if x € V(I N.J), then everything in I N .J vanishes
at . Now if P is the set of functions which vanish at x, then TN J C P so
that I or J is in P. In the first case x € V(I), in the second z € V(J) so C
holds. Conversely if z € V(I) U V(J) then x € V(I) or in V(J). In either
case x € V(INJ).

For the final part, suppose z € V(I + J), then x € V(I) and = € V(J)
sox € V(I)N'V(J). On the other hand, if x € V(I) NV (J), then choose
ferlandge Jsothat f(x) = g(x) = 0 and so (f + ¢g)(x) = 0. Hence
V(I +J)=0. O

Now we talk about a geometric interpretation of any ring. Set R to be a
commutative ring. For each @ € Spec R, set k(Q) = Rg/(Q - Rg). This is
called the the residue field of Q. We define f(Q) to be the image f in k(Q).

We can now view f as a function on Spec R, it just happens to take values
(in possibly different fields).

For instance, in C[z], f(z) evaluates to f(a) € C = k((z — ).

On the other hand, —13 € Z evaluates to [2] at (5) in F5. It evaluates to
[1] at (7) in Fr, etc.

Lemma 18.1. Suppose R is a ring and f,g € R. If f =g € k(Q) for all
Q € Spec R, then f — g is nilpotent. In particular if R is a domain or even
just reduced, the f = g..

Proof. 1t is sufficient to show that the kernel of the canonical map R —
HQeSpec g k(Q) is the nilradical. But the kernel is simply the intersection of
all the Q € Spec R. O

Now we move on to a worksheet for the remainder of the class, that will
demonstrate a variant of the Nullstellensatz that works for any ring.
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19. WEDNESDAY, OCTOBER 9TH

Definition 19.1. Suppose R is a ring. We say that R is Noetherian if its
ideals satisfy the ascending chain condition. That is, if

L CI, C..

is an ascending chain of ideals, then I,, = I,,4; for all n > 0.
Likewise we say that R is Artinian if its ideals satisfy the descending
chain condition. That is if
L DI, D..

is a descending chain of ideals, then I, = I,41 for all n > 0.

Lemma 19.2. R is Noetherian if and only if every ideal of R is finitely
generated.

Proof. 1 leave it to you to write it down carefully. [l

Example 19.3. Clearly a field is both Artinian and Noetherian, but of
course most rings we encounter are not Artinian. For instance k[z] and Z
are Noetherian but not Artinian.

Proposition 19.4. Every Artinian ring is Noetherian (this is NOT true
for modules).

Proof. Suppose R is an Artinian ring. O
Next we prove Hilbert’s basis theorem.

Theorem 19.5 (Hilbert’s basis theorem). If R is Noetherian, then so is
Rizx].

Proof. Let J C R[x] be an ideal. We need to show that J is finitely gener-
ated. Set J, = {r € Rlra" + r,_12""'...r9 € J}. We note that .J, is an
ideal of R. Furthermore, J,, C J,+1 (since we can multiply elements of J by
x and stay in J). Hence J, = Jp4+1 for all n > nyg.

For each 0 < ¢ < ng write J; = (r;1,...754) (we can use the same d for all
if we desire). Choose f; ; € J of degree i whose leading coefficient is r; ;. We
will show that (f; ;) = J. Now choose f € J. We will show that f € (f; ;)
by induction on deg f (degree 0 being obvious). Indeed, write f = rz" +.. ..
Note that r € J,, and hence there exists g € (f; ;) with g = ra™ +.... Thus
f — g € J has lower degree and we are done. O

Corollary 19.6. Finitely generated algebras over Z or a field k are Noe-
therian.

Now we move on to modules.

Definition 19.7. We say that an R-module M is Noetherian if its submod-
ules satisfy the ascending chain condition.

Note that submodules (and quotient modules) of Noetherian modules are
clearly Noetherian.
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Lemma 19.8. M is Noetherian if and only if every submodule of M is
finitely generated as an R-module.

Proof. Obviously a Noetherian module is finitely generated. And if every
submodule is finitely generated, the ascending chain condition holds by the
usual argument. ([l

20. FrRiDAY, OCTOBER 11TH

Lemma 20.1. If0 — A 1y B2 ¢ 0 is a short eact sequence then B
is Noetherian if and only if A and C' are Noetherian.

Proof. We only need to handle the (=) direction, the other containment is
obvious. Suppose that M C B is a submodule. Then g(M) is a finitely
generated submodule of C. Likewise, f~!(M) C A is finitely generated.
But notice 0 — f~1(M) — M — g(M) — 0 is exact and so M is finitely
generated by the homework problem. O

Corollary 20.2. If R is a Noetherian ring, then R"™ is a Noetherian module
for every n > 0.

Proof. We have short exact sequences 0 — R' — R — RI — 0 and
induction. (]

Proposition 20.3. Suppose R is a Noetherian ring. Then an R-module
M is finitely generated if and only if it is Noetherian. In particular, every
submodule of a finitely generated module over a Noetherian ring is finitely
generated.

Proof. We only have to show that if M is finitely generated then it is
Noetherian. First since M is finitely generated there exists a surjection
R"™ — M. But then M is a quotient of a Noetherian module and hence
Noetherian. O

20.1. Support, annihilators and associated primes. We are going to
follow Reid’s book closely here.

Definition 20.4 (Annihilators). Given a ring R, an R-module M and a
subset S C M, we define the annihilator of S to be the set

AmmpS={re R|rz=0forall z € S}.

It is easy to see that this is an ideal.

Lemma 20.5. If M is finitely generated, then the formation of Anng M
commutes with localization. In particular if W C R is a multiplicative set
then W1 Anng M = Annyy 1y WM.

Proof. Suppose that M has generators {x1,...,2,} and so {z1/1,...,2,/1}
generate W~'M. Suppose that » € Anng M and so rz; = 0 for all 4. But
then obviously (r/1)(x;/1) = (rz;)/1 = 0 as well so C is easy. Conversely,
suppose that (r/w) annihilates WM. Then (r/w)(x;/1) = 0 for all 1.
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Thus there exist v; € W such that v;rz; = 0 € M for all 7. Letting v =
[Jvi we see that vrax; = 0 for all i. Thus vr € Anng M and so r/w €
W=L(Anng M). a

Also recall the dimension of support.

Definition 20.6 (Support). Given a ring R and an R-module M, we define
Supp M to be the set of primes ) € Spec R with Mg # 0.

Supp M = {Q € Spec R | Mg # 0}.

Lemma 20.7. Suppose that M is a finitely generated R-module. Then
V(Anng M) = Supp M. In particular Supp M is closed.

Proof. Suppose that I = Anng M. Choose @ € Supp M. Since the forma-
tion of I commutes with localization, it is sufficient to show the statement
in the case that R = R is a local ring with maximal ideal (). Then since
M = Mg we see that Q € Supp M is simply the assertion that Supp M is
non-empty. We need to show that V(Anng M) is also non-empty in this
case. But since M # 0, 1 ¢ Annp M and so Anng M is a proper ideal
contained in (). The result follows. O

Definition 20.8 (Associated primes). Let A be a ring and M an A-module.
An associated prime (or assassin) of M is a prime ideal P € Spec R such
that there exists x € M with

Anngx = Q.

This condition is equivalent to requiring that R/Q = (x) C M via the first
isomorphism theorem. In particular, () is an associated prime of M if and
only if M contains a submodule isomorphic to R/Q.

We write Ass M to denote the set of assassins of M.

21. MONDAY, OCTOBER 14TH

Proposition 21.1 (Section 7.4, 7.5 in Reid). Suppose that M is an R-
module, x € M and P = Anngx. Then

(a) If 0 # y € R = (), then Anngy = P as well. In particular,
Anng(R/P) = P.

(b) Any mazximal proper ideal of the set of ideals {Anngy |y € M} is
prime and hence in Ass M.

(¢) If R is Noetherian and M # 0, then Ass M # ().

(d) If LC M and N = M/L then AssM C Ass N U Ass L.

(e) If R is Noetherian and M # 0, then

{reR|rz=0 for some0#x € M} = U Q
QEAss M
(f) If Q € Ass M then V(Q) C Supp M.
(g) If R is Noetherian, then if Q € Supp M is a minimal ideal in Supp M,
then @ € Ass M.
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Proof. For (a), simply note that tR = R/P.

For (b), suppose that @ = Anngy is a maximal ideal of that set and
ab € Q with a,b ¢ Q. Hence aby = 0 but by # 0. But notice that a €
Anng(by) 2 Anng(y) = @ which does not contain 1, contradicting the
maximality of @

For (c), simply notice that the set in (b) is non-empty and apply the
Noetherian hypothesis to show it has a maximal element.

For (d), choose x € M with P = Anngxz. Write f : M — N = M/L
to be the canonical surjection. If xRN L = {0} then obviously f|;r is
injective and TR = xR = R/P. On the other hand, if 0 # y € RN L then
Annpy = R/P as well by (a).

For (e), if r is in the left-hand-side, then r is contained in a maximal
element in the set from (b), and hence contained in an element of Ass M.
The reverse containment is even more trivial.

For (f), we notice that if @ € Assys, then R/Q is isomorphic to a sub-
module N € M. Hence Rg/(QRg) = Ng C Mg and the left side is nonzero
and hence so is the right. Hence @ € Supp M but then Mp # 0 for any
P D Q since (Mp)g = Mg # 0.

22. WEDNESDAY, OCTOBER 16TH

For (g), suppose that @ is minimal as above. Then Mg # 0. Furthermore
Mp = 0 for any P C @ so that SuppRQ Mg = {QRq}. Since Ass C Supp,
we see that Assg, Mg = {QRq} since Mg # 0.

But now choose z/w € Mg, * € M, w € R\Q with Anng,, (v/w) = QRgq.
Optimally Anngz = @ and certainly each » € Anngx is such that r/1 €
QRg. This implies that each such r € () so C is always true. But equality
might be out of our grasp. Of course, Q = (s1, ..., sq) is finitely generated so
that s;/1 € Anng, Mg and in particular (s;/1)(z/w) = 0 so that v;s;z =0
and hence taking the product v = [] v; again we see that each s; annihilates
vz so that Anng(vr) 2 Q. But as before, since Anng, (vr/(vw)) = QRg,
Anng(vz) C Q. O

Lemma 22.1. For ideals I,J C R, we have VI -J = VINnVJ.

Proof. Obviously the intersection of radical ideals is radical, so the contain-
ment C is obvious. Conversely if z € VI N+/J, then 2" € I,J for some
n > 0. Hence 2?" = 2" - 2" € I - J which implies that z € VI-J as
desired. O

Lemma 22.2. Fix R a Noetherian ring and I C R. Then R has finitely
many primes in V(I) which are minimal with respect to containment. In
particular

VI=PnN...nP,

where the P; are the finitely many minimal primes containing I.
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Proof. Let E be the set of radical ideals who cannot be decomposed as
above. We would like to show that the set is empty. Suppose not, then E
contains a maximal element J since R is Noetherian. Since J is not itself
prime (or else it would not be in F) there exist a,b ¢ J with ab € J. Set
J1 = J+ (a) and Jo = J + (b). Note J; - Jo = J even though J C Jj, Jo.
Hence J = v/Ji - Jo = \/J1 N /Jo. But now Ji, Jo are not in E since J is
maximal in E. Hence J; and Jo are intersections of finitely many primes
(minimal over them). But then so is J, a contradiction. O

Corollary 22.3. Let M be a finite module over a Noetherian ring A, then

n
Supp M = | V(P)
i=1
where the P; are the finitely many minimal primes containing Ann M .
Proof. We already saw that SuppM = V(AnnM) = V(vAnn M). But

v Ann M is an intersection of the finitely many primes minimal over it and
then we are done since V(J1 N J2) =V (J1) UV (J2). O

Theorem 22.4. If A is a Noetherian ring and M is a finite A module, there
exists a chain of submodules
O=MyC M C---CM,=M
with M;/M;_1 = A/P; where P; is prime. Furthermore,
AssM C{Py,...,P,}
and so Ass M is finite.

Proof. Since Ass M # (), we see that M; = A/P; a subset of M exists. Now
repeat the argument and construct Mé C M/M; and let My be the inverse
image of M. This chain stops since M is Noetherian. Next we need to
show that the associated primes of M are among the P;. But this follows
immediately from [Proposition 21.1)(d). O

23. FriDAY, OCTOBER 18TH
23.1. Primary ideals. We now define primary ideals.

Definition 23.1 (Primary ideals). An ideal @ C R is primary if fg € Q
implies that f € Q or ¢g" € @ for some n > 0. (Note this is symmetric since
fg=gf).

Note that @ is primary if and only if all of R/Q’s zerodivisors are nilpo-
tent.

Lemma 23.2. If Q is primary then \/Q is prime.

Proof. If ab € \/Q, then a™b™ € Q. Hence a™ € Q or b € (). Hence
a€+/Qorbec Q. O
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Remark 23.3. You might be tempted to think that being primary is the same
that /@ is prime. This is not true. For instance consider J = (2, 2y) €
Ek[z,y]. Then v.J = (z). But note that 2y € J but neither 2 € J or y" € J.

Example 23.4 (Powers of primes are not always primary). Obviously prime
ideals are primary. If @ = (f) is a prime ideal in a domain, then Q" is
always primary. We proceed by induction on n, the base case is obvious so
we suppose n > 2. Now, suppose that zy € Q™ = (f™) with y™ ¢ (f™) for
any n. Since xy = zf™ € (f) which is prime, we see that f|z or f|y. But the
second case is impossible since y™ ¢ (f™) for any m. So we write x = uf.
Hence ufy = zf™ and so uy = zf"! (since we are in an integral domain).
Then uy € (f*~1). Since y™ ¢ (f™) for any m, we see also that y™ ¢ (f"~1)
for any m. Hence by induction u € (f*~1) and hence uf € (f") as desired.

More generally (and I won’t prove this now) if @ = (fi1,),fs) € R is
an ideal such that f;1; is not a zero divisor in R/(f1,..., fi) for each i =
1,...,d—1, then Q" is primary for all n.

In general however, Q" is not primary for an arbitrary prime ideal Q.
Let us consider an example. R = k[z,y,2]/(xy — 2?). Q = {(x,z). Then
Q? = (2%, 22, 2) = (22,22, 2y). Note that 2y € Q? but = ¢ Q and y" is not
in @ for any n.

Example 23.5 (Inverse images of primary ideals are primary). Suppose
f:R — Sisaring map and Q C S is primary. Then f~1(Q) is primary
as well. This is easy, note that R/(f~1(Q)) — S/Q. All of S/Q’s zero
divisors are nilpotent, and so the same can be said for R/(f~1(Q)). This is
particularly useful in the case that S is a localization of R.

Lemma 23.6. Suppose that R is a ring, J C R is P = /J-primary. Then
J - Rp is PRp primary and if f : R — Rp is the natural map, then
fY(J-Rp)=J.

Proof. Suppose that (z/w)(y/w') = (j/w") € J- Rp. Then vay = vww'j €
J. Hence since v" € R\ P C R\ J is not in J, we have that zy € J. But
then either z € J or y™ € J. In the first case (z/w) € J - Rp and in the
second (y/w')™ € J - Rp.

Now suppose that z € f~1(J - Rp). Hence z/1 € J - Rp. It follows that
z/1 = y/w for some y € J and w = R\ P. Then zwv = vy € J. Since
(wv)™ ¢ J for any n, z € J as desired. O

We do have the following though.

Proposition 23.7. If Q C R is an ideal such that /Q is mazimal, then Q
1S primary.

Proof. Suppose that zy € Q. Then xy € /Q. Say z ¢ Q and y™ ¢ Q for
any n. Then consider @ : = = {f € R | fr € Q}. Note that this ideal
contains @, and y, but does not contain 1. Then /Q C /Q : x, but the left
side is maximal and so /@ : x is also maximal and equal to v/Q. But now

y €/Q :x=+/Q. Thus y" € Q for some integer n. O
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Proposition 23.8. Let R be Noetherian, Q C R an ideal. Then Q is P-
primary if and only if Ass(R/Q) = {P}.

Proof. Suppose that /Q = P and Q is primary. Then all the zero divisors
of R/Q are nilpotent (and all are contained in P/Q). Now suppose that
x € Q/P. Then

(0@ =Q/Q C Anng;ur C P/Q =+/Q/Q

Hence if Anng /g x is prime, it is primary and so P/Q-primary and thus equal
to P. It follows that Assp/o(R/Q) = {P/Q} and so Assp(R/Q) = {P}.

Now suppose that Ass(R/Q) = {P}. We claim that if 0 # M C R/Q
then v/Anngp M = P. Note /Anng M is the intersection of the (minimal)
prime ideals containing Anng M, the minimal primes of Supp M. Thus they
are in Assp M C Asspr(R/Q) = {P} proving the claim.

Next note that since @ = Anng(R/Q), we see that P = /Q. We need
to show that @ is actually primary. We choose fg € @, and say f ¢ Q. Set
f=f+Qe€R/Q. Nowgec Anng f C v/Anng f = P = /Q, so g" € Q for

some n. This shows that @) is primary. O

24. MoONDAY, OCTOBER 21ST

Definition 24.1. Let R be a ring and I C R. A primary decomposition of
I is an expression

I=Q1N...NQk
where each @); is primary. It is called shortest if
(a) I # (), Q) for any i and
(b) If Q; is P; primary, then P; = P; implies that i = j.
If I has a primary decomposition, then it has a shortest primary decom-
position by the following lemma.

Lemma 24.2. If Q,Q’ are P-primary, so is Q N Q'.

Proof. Suppose that fg € Q N Q" and ¢™ ¢ Q N Q' for any m. Then

g ¢ +/Q = P\/Q' so that g™ ¢ Q' for any m. Hence f € Q and f € Q' since

Q, Q' are primary. The result follows. ([
The next big goal is the existence of primary decompositions.

24.1. Primary decomposition. We already know primary decompositions
of radical ideals. We can decompose them into intersections of their minimal
primes. Likewise ideals in PIDs and Dedekind domains are easy to write as
intersections primary ideals.

Definition 24.3. An ideal J C R is indecomposable if I = J N K implies
that I = J or I = K. Note prime ideals are indecomposable.

Lemma 24.4. In a Noetherian ring, every ideal is a finite intersection of
indecomposable ideals.
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Proof. Let X be the set of ideals that cannot be written in such a fashion.
Choose a maximal element, then it can be decomposed into an intersection
of strictly bigger ideals. Those ideals have decompositions since they are
not in .. [l

Lemma 24.5. In a Noetherian ring B, if (0) C B is indecomposable then
it 1s primary. More generally, in any ring R, J C R s indecomposable then
it 1S primary.

Proof. First suppose that xy = 0 € B. Consider the chain Annpz C
Annga? C .... By the Noetherian hypothesis, we know Anng(z") =
Anng(z"™1). We claim that (z") N (y) = 0. Obviously if a € (z™) N (y)
then za € (ry) = (0). But also a = bx"™ so ax = bz""! so that b €
Ann 2" = Ann 2" so that a = baz" = 0.

For the second part, note that if J is indecomposable, so is (0) in B =
R/J. Then (0) is primary and so J is primary too. O

By combining the lemmas we get that.
Theorem 24.6. Primary decompositions exist.

24.2. Uniqueness of primary decomposition. In particular, the associ-
ated primes of a primary decomposition are unique (although the individual
primary objects in even a shortest decomposition are usually not unique).
The following lemma will be crucial in helping us identify the part of the
primary decomposition that is unique.

Lemma 24.7. Suppose W C R is a multiplicative set and I = Q1N...NQq is
a shortest primary decomposition of I with P; = \/Q;. Further suppose that
Py, ..., P, have trivial intersection with W and Qr41, . . ., Q4 have nonempty
intersection with W. Then

W = () Qi(W™'R)
i=1
is a primary decomposition of W11. Furthermore, ¢~ 1(W =) = Q1N...N
Q, where ¢ : R — WIR is the canonical map.

Proof. Since localization commutes with finite intersections we see that the
above is certainly a primary decomposition. For the second part, the inverse
image of an finite intersection is the intersection of the inverse images. The
rest is easy. ([
25. WEDNESDAY, OCTOBER 23RD
We easily obtain:

Corollary 25.1. The primary ideals corresponding to minimal primes in
Assg(R/I) in a shortest primary decomposition of I are unique.

Proof. Set W = R\ P;, expand I to W~'R and then pull back. O
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We also have:

Theorem 25.2. Suppose I = Q1N ...N Qg is a shortest primary decompo-
sition. Set P; = 1/Q;. Then

ASS(R/I) = {Pl, oo ,Pd}.
Proof. Note that we have an inclusion:
f:R/I —-R/Q1®...5R/Qq.

Since Ass(R/Q;) = P; we see that the associated primes of the right side
are simply Pi,..., Py and so Assgr(R/I) C {P,..., Py}

Next consider Mj = (1, .; Q;/I € R/I. This module cannot be zero since
the decomposition is shortest. Of course f(Mj) is zero in each component of
R/Q1®...®R/Qq except the jth (where it is not zero). Since Assr(R/Q;) =
{P;} and f(M;) C R/Q;, we see that Ass(M;) = {P;} and so R/I has P;
as an associated prime as well. U

25.1. Completion. We follow Atiyah-MacDonald. One of the “interesting”
features of algebraic geometry you have already noticed is that the open
sets are really big. Sometimes you want to work with Euclidean open balls.
You could try to use localization to do this, but it turns out that R still
remembers the “generic” global geometry of Spec R. For instance, it knows
the genus (number of holes) if Spec R is an affine chart of a Riemann surface
(it even knows what complex analytic isomorphism class of the Reimann
surface you are on). One way around that is to use completion. Whereas
localization somehow cuts down the size of Spec from above, completion
builds up a ring out of higher-tangency information.
I won’t type up these notes. See Atiyah-MacDonald for details.

25.2. Introduction to dimension theory. We now discuss dimension
theory for rings.

Definition 25.3 (Krull). Given a ring R, the (Krull) dimension of R is the
maximal length n of a chain of prime ideals:
QCQSC@Qc...C0CR

If there is no such maximum, we say that R has infinite (Krull) dimension.
In either case, we denote the (Krull) dimension by dim R.

More generally, given any prime ideal @), the height of () is the maximal
length n of a chain of prime ideals

Q& &.. . CQn=0Q.
This is denoted by ht(Q) if it exists. In particular, dim R = max{ht(Q)}gespec k-

Obviously a Dedekind domain has dimension 1, and a field has dimension
0. Notice that this is reasonable, dim C[z] = 1 (one complex dimension).

Lemma 25.4. Suppose k is a field, then dim k[zq, ..., z,] = n.
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Proof. Obviously dim k[z1,...,2,] > n since we can form the ascending
chain of primes:

0) € (z1) C (w1, 22) € ... T(T1,...,%n).
We need to show that there is no longer chain. O

26. COMPLETION

We followed Atiyah-MacDonald closely.

27. DIMENSION THEORY
We followed Atiyah-MacDonald closely.

28. DECEMBER 5TH, 2013

We have so far seen numerous functors which are left or right exact, but
not ezact. For instance
o Homp(M, ) is left exact
o Homp(__, N) is left exact (although contravariant)
o ® is right exact
o I'7(_) is left exact
o we even saw that lim. was left exact when we studied completion.
It turns out there is a nice way to handle all these failures of exactness.
Through the use of derived functors.
First a formality.

Definition 28.1. Suppose that B* = ... - B! - B - B! = B2 —» .
is a complex (ie, ker(B; — Bjt1) 2 im(B;—; — B;)). We define the ith
cohomology of B*® to be

h'(B®) = ker(B; — Bi11)/im(B;_1 — B;)
28.1. Tor.

Definition 28.2 (Projective resolutions). Suppose R is a ring and M is an
R-module. A projective resolution of M is a series of projective (ie free)
modules F;, i =0,—1,—2,... and maps

Ay pon Ity pont In2 B pe2 i pet S po g

making the above sequence exact. Such a sequence could be infinite. Since
every module is a quotient of a free (and hence projective) module, every
module has a projective resolution (although not a unique one).

Definition 28.3 (Tor). Suppose that P®* — M is a projective resolution of
M. Note that for any module C', P*®C' is a complex. We define Tor; (M, C)
to be hi(P®* ® C). It is not obvious that this is independent of the choice of
projective resolution, but it is true.

It is easy to see that:
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Lemma 28.4. Tory(M,C) =2 M ® C. Furthermore, if M is projective then
Tor;(M,C) =0 for all i > 0.

One other fact that is useful, but which we won’t prove is that
Lemma 28.5. Tor;(M,C) = Tor;(C, M).

Now suppose that 0 — L — M — N — 0 is a short exact sequence.
We form a projective resolutions of L and N to form the following:

PliQ P//72
p-1 pr-1
PIO PIIO
0 L M N 0

We set P; = P/ ® P! with the canonical short exact sequences 0 — P/ —
P, — P — 0. We claim that these combine to form a commutative
diagram

0—— P2 p2 pr=2 0
0—— P! P! pr1 0
0 P PY p" 0
0 L M N 0

where the columns form projective resolutions. This is pretty easy.
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Now apply the functor ® gC' for some module C' to the resolutions P® =
...P?2 — P! — PY (likewise with P"® and P"®). We obtain

0—P2?20C—P2?20C—P'"20C—0

0—sPloC—PloC—P1oC—0

0— PQRC —— P'C—— P9 C——0

0 0 0 0 0

We now apply the snake lemma, first to the diagram

P1@C/im(P2C)— P 1®C/im(P2QC) — P'""1®C/im(P"2®C) —0

J | J

0——— P0gC PPoC PO@C——0

The cokernel below the bottom row is simply
LeC —-MxC—=NxC—0

but this snakes up and connects with the kernels above the top row, which
are

Tory(L,C") — Tory(M,C) — Tory(N,C)
connecting these we get a long exact sequence
Tory(L,C) — Tor1(M,C) — Tor;(N,C) — LRC — M®C — N®C — 0.
But we don’t stop now. We next consider the diagram:

P2®C/imP3®C)— P 2QC/im(P3®C) — P'20C/im(P"3®C) —0

| J |

0 —ker(P1®C —P°®C) —ker(P"'1®C — P°®C) — ker(P""'®@C — P""®C)

applying the snake lemma again gets us to the long exact sequence

TOI"Q(L, C) — TOI"Q(M, C) — TOI"Q(N, C) —
Tor; (L, C) —  Tor; (M, C) —  Tory (N, C) —
LeC — M® — N®C — 0.
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28.2. Ext. We first consider the functor Homp(__,C).

Definition 28.6. If P* is a projective resolution of M, then we define
Ext'(M,C) to be h*(Hompg(P*®,(C)), the ith cohomology of the complex
Hom R(P ., C ) .

Given a short exact sequence

0O0—L—>M-—N—0

as above, we again form projective resolutions

0—— P72 p—2 pr—2 0
0—— P! p1 pr=t 0
0 P PP p" 0
0 L M N 0

and apply the functor Hompg(__, C) to the projective resolutions to obtain:

0 +—— Hompg(P'72,C) +—— Hompg(P~2,C) +—— Hompg(P"~2,C) +—0

0 +—— Hompg(P'~!,C) +—— Hompg (P!, C) +—— Hompg(P"1,C) +—0

0 +—— Hompg(P",C) +—— Hompg(P’, C) +—— Hompg(P",C) +——0

0 0 0 0 0

Applying the same snake lemma formalisms again, we note that we have
diagrams

Hompg(P'~*71,C) Homg(P~71,0)
ker — ) <— ker Hv <— ker
Hompg(P'~%72,C) Hompg(P~'72,0)

T T

Hompg (P71, C)
—
Hompg(P"~'72,C)

T

>%o

0 ¢ Homg(P'~% C)/im(Homg(P'~it1 C)) ¢ Homg (P~ ¢, C)/im(Homg (P~ '*t! C)) < Homg(P"~%, C)/im(Homg (P~ C))
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The snake lemma yields the following long exact sequence.

0 — Hompg(N,C) — Hompg(M,C) — Homgpg(L,C)
—  Exth(N,C) — Exth(M,0) — Exth(L,0)
—  Ext4(N,C) — .

However, there isn’t just one Ext functor... We also have Hompg(B,_ ).
Projective resolutions just aren’t good enough any more. We need

Definition 28.7 (Injective resolutions). Suppose that M is a module. We
say that

(O—>M—>I’):(0—>M—>IO—>11—>12—>>

is an injective resolution if each I’ is an injective module and the above
sequence is a long exact sequence. It is a non-trivial fact that injective
resolutions exist (to show it, it is enough to show that for every module N,
there is an injective module and an injection N < I).

Definition 28.8. Fix I* to be an injective resolution of a module M and let
Hompg(B,I°) be the corresponding complex. Then we define Extp (B, M)
to be h*(Hompg(B, I*)).

There are a couple key facts we won’t prove.

o This Ext is also independent of the choice of injective resolution.
o This Ext agrees with the other Ext we defined (which is really useful!)
In other words

h'(Homp(B, I*)) = h'(Homg(P*, M))
where I°® is an injective resolution of M and P°® is a projective reso-
lution of B.

Again, given 0 — L — M — N — 0 we can form injective resolutions
of L and N and take the direct sum to get an injective resolution of M and
so have

0 I/2 IQ I/12 0
0 I/l Il I//l 0
0 I/O IO IIIO 0
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We can apply the covariant functor Hompg(B,_) to the I parts and obtain:

0 —— Hompg(B, I'?) —— Hompg(B, I?) —— Hompg(B, I"?) —— 0

0 —— Hompg(B, I"') —— Hompg(B, I') —— Hompg(B, I"") —— 0

0 —— Homp(B, I'’) —— Hompg(B, I°) —— Homp(B, I"") —— 0

0 0 0 0 0

The rows are exact and the columns are complexes. Using the snake lemma
as before gives us a long exact sequence
0 — Hompg(B,L) — Hompg(B,M) — Hompg(B,N)
—  EBExth(B,L) — Exth(B,M) — Exth(B,N)
—  Ext%(B,L) — Ext%(B,M) — Ext4(B,N)
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