
WORKSHEET # 1

MATH 538 FALL 2011

In this worksheet, we’ll go through the proof of primary decomposition of ideals in a Noetherian ring. In particular,
we will prove the following

Theorem. In a Noetherian ring A, every ideal I has a primary decomposition. Thus each I can be written as

I = Q1 ∩ · · · ∩Qn

where each Qi is Pi-primary (for some prime Pi). Furthermore, if one writes the decomposition such that Pi 6= Pj

for all i 6= j and such that I ( (∩i 6=jQi) for each j (which is possible by 2. below), then the set of Pi which appear
coincide exactly with Ass(A/I).

Before proving this, we first warm up.

1. Prove that Q is primary if and only if the only zero divisors in A/Q are nilpotent.

Solution: Indeed, suppose first that Q is primary and that xy = 0 ∈ A/Q with neither term being zero. Thus
xy = yx ∈ Q with x, y /∈ Q so that xn and yn are in Q for n� 0. Thus x and y are nilpotent.

Conversely if xy ∈ Q with x 6= 0, then xy = 0 with x = 0. Thus either y = 0 or yn = 0 for n� 0 (since in the
second case, y must be nilpotent). But then yn ∈ Q as desired.

2. Prove that if Q1 and Q2 are both P -primary (to the same prime) then Q1 ∩Q2 is also P -primary.

Solution: We need to prove two things, that Q1 ∩Q2 is primary and that its radical is P .
First suppose that xy ∈ Q1 ∩Q2 with x /∈ Q1 ∩Q2. Without loss of generality suppose that x /∈ Q1. Since Q1

is primary, yn ∈ Q1 for n� 0, thus y ∈ P =
√
Q2 and so yn ∈ Q2 for n� 0 as well. This proves the first part.

For the second, suppose that y ∈ P =
√
Q1 =

√
Q2, then yn ∈ Q1 and yn ∈ Q2 for n� 0, and so yn ∈ Q1 ∩Q2

for n� 0 as desired.
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For the existence proof, we employ a strategy using the following definition.

Definition. An ideal I ⊆ A is called indecomposable if it cannot be written as an intersection of two strictly
bigger ideals.

Our strategy for proof of the existence part of the theorem has two parts. First show that every ideal can be
written as an intersection of finitely many indecomposable ideals and then show that every indecomposable ideal
is primary.

3. Show that if A is Noetherian, then every ideal is an intersection of finitely many indecomposable ideals.
Hint: Suppose not. Choose a largest such ideal and derive a contradiction.

Solution: Suppose that S is the set of such ideals which cannot be written as an intersection of finitely many
indecomposable ideals. Since A is Noetherian, S has a largest element. Choose I to be that element. Then there
are two possibilities, either I is indecomposable or it is not.

In the former case, then I can be written as an intersection of finitely many indecomposables (namely just
itself). Thus this first case is impossible. In the latter case, if I is decomposable then I = a ∩ b with I ( a, b. But
then since I is a largest element of S, neither a or b are in S and so a = I1 ∩ · · · ∩ In for Ii indecomposable and
b = J1 ∩ . . . Jm for Jj indecomposable. Thus

I = I1 ∩ · · · ∩ In ∩ J1 ∩ · · · ∩ Jm

and we have just proven that I is not in S. A contradiction.

4. We will prove the following CLAIM: If B is a Noetherian ring and {0} ⊆ B is indecomposable, then {0} is
primary. Explain why it is sufficient to prove this claim.

Solution: This will prove the second part of our proof strategy for existence. Indeed, if B = A/Q, then if Q is
indecomposable, clearly 〈0〉 ⊆ B is indecomposable. Thus by the claim it is primary, and so by problem 2. Q is
also primary.

5. Now prove the CLAIM.
Hint: Suppose that xy = 0. Consider the ascending chain AnnB y ⊆ AnnB y2 ⊆ AnnB y3 ⊆ . . . . Use the fact that
the chain stabilizes to prove that 〈x〉 ∩ 〈yn〉 = 0 for n sufficiently large (analyze an element in that intersection).
This is the hardest step in the worksheet.

Solution: Choose n such that the chain above stabilizes at n and fix a ∈ 〈x〉 ∩ 〈yn〉. Thus a ∈ AnnB y and
a = tyn. Thus 0 = ay = tyn+1 so t ∈ AnnB yn+1 = AnnB yn So a = tyn = 0. This proves that 〈x〉 ∩ 〈yn〉 = 0 for
n� 0. Since {0} is indecomposable, either 〈x〉 or 〈yn〉 = 0 and the proof is complete.
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Now prove the uniqueness theorem we discussed.

6. Prove that Ass(A/I) ⊆ {P1, . . . , Pn} where the Pi are in the Theorem.
Hint: Consider the diagonal map A/I → ⊕n

i=1A/Qi. Prove that that map is injective to prove the containment ⊆.

Solution: First we prove a lemma.

Lemma 0.1. Suppose that 0→ L→M → N → 0 is a short exact sequence. Then Ass(M) ⊆ Ass(L) ∪Ass(N).

Proof. Suppose that P ∈ Ass(M) so that A/P is isomorphic to some G ⊆ M . There are two possibilities. Either
G∩Ass(M) = 0 or G∩Ass(M) 6= 0. In the former case, then clearly N has a submodule isomorphic to G and thus
to A/P . Thus P ∈ Ass(N). In the latter case, choose a non-zero y ∈ G ∩ L ⊆ G ∼= A/P . Set x ∈ A/P to be the
element corresponding to y. Then AnnA y = AnnA x = P and so P ∈ Ass(L). �

Now, certainly the map A/I ∼= A/(∩iQi) → ⊕n
i=1A/Qi is injective. Thus if P ∈ Ass(A/I), then clearly

P ∈ Ass(⊕n
i=1A/Qi) as well (consider the composition of injections A/P ∼= G → A/I → ⊕n

i=1A/Qi. But clearly
the lemma implies that Ass(⊕n

i=1A/Qi) ⊆ {P1, . . . , Pn} since we can write short exact sequences of the form
0→ A/Q1 → ⊕n

i=1A/Qi → ⊕n
i=2A/Qi → 0.

7. Prove that Ass(A/I) ⊇ {P1, . . . , Pn} where the Pi are in the Theorem.
Hint: consider Mj = (∩i 6=jQi/I) ⊆ A/I. Explain why Mj 6= 0 and consider its image in the direct sum above.

Solution: As originally written, I left out a key ingredient (although an obvious one) from the uniqueness part
of the main theorem above. In particular, I need to assume that I ( (∩i 6=jQi) for each j. It immediately follows
that Mj 6= 0 for each j and so we consider it’s non-zero image N in ⊕n

i=1A/Qi. Now, N is zero in each entry except
the jth entry. Thus N ∼= Mj is a non-zero submodule of A/Qj which clearly has only one associated prime Pj .
Thus {Pj} = Ass(Mj) also.


