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1. Tor

Fix a ring A and a module M . A free resolution of M is a set of free modules Fi = R⊕ni , i ∈ Z≥0 and
maps Fi → Fi−1 (set F−1 = 0) as well as a map ρ : F0 →M such that

· · · → F3 → F2 → F1 → F0
ρ−→M → 0

is exact. The data:

· · · → F3 → F2 → F1 → F0 → 0

is denoted by F• and is called a free resolution of M . With the map to M , the data is denoted by F• →M .
We briefly recall why free resolutions exist for every module. Indeed, choose a set of generators for M

and fix a map ρ : F0 → M sending the basis elements of F0 to the generators of M . Choose a free module
F1 surjecting onto the kernel Z0 of ρ. We then have F1 → F0 → M →) exact. Choose F2 surjecting onto
the kernel of F1 → F0. Continuing in this way proves that every module has a free resolution.

Given another module N , we can form a complex denoted by (F•)⊗A N

. . .
d4−→ F3 ⊗A N

d3−→ F2 ⊗A N
d2−→ F1 ⊗A N

d1−→ F0 ⊗A N
d0−→ 0.

By a complex, we just mean that ker di ⊇ Image di+1.

Definition 1.1. Given two A-modules M and N , we define

TorAi (M,N) = ker di/ Image di+1

If A is implicitly understood, we may only write Tori(M,N).

I list several facts which I won’t prove (they aren’t any harder than what we do below). You should prove
(v) to yourself though!

Proposition 1.1. With M , N and A as above, we have:

(i) Tori(M,N) is independent of the choice of free resolution for N .
(ii) If one takes a flat resolution instead of a free resolution (ie, only requiring that the Fi are flat), then

the same formula still works.
(iii) Tori(M,N) ∼= Tori(N,M) (ie, take a free resolution of N , etc.)
(iv) Tori(−, N) is a functor. In particular, if M → M ′ is a map of modules, then there is an induced

map

Tori(M,N)→ Tori(M
′, N).

(v) Tor0(M,N) ∼= M ⊗A N .
(vi) If M is flat, then Tori(M,N) = 0 for all i > 0.

I recall a couple lemmas.

Lemma 1.1 (The Snake Lemma). Suppose that we have a commutative diagram with exact rows

N ′

α

��

// N

β

��

// N ′′

γ

��

// 0

0 // M ′ // M // M ′′

Then we have an exact sequence:

kerα→ kerβ → ker γ → cokerα→ cokerβ → coker γ

1
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Proof. This is in the homework. �

As an exercise, try to prove the following (important) lemma.

Lemma 1.2 (The Five Lemma). Suppose we have a commutative diagram with exact rows

N1

f1

��

// N2

f2

��

// N3

f3

��

// N4

f4

��

// N5

f1

��

M1
// M2

// M3
// M4

// M5

• Suppose that f2 and f4 are surjective and f5 is injective, then f3 is surjective.
• Suppose that f2 and f4 are injective and f1 is surjective, then f3 is injective.
• In particular if f2 and f4 are isomorphisms, f1 is surjective and f5 is injective, then f3 is an

isomorphism.

Proof. This is a standard diagram chase. Try it. �

We now discuss the horseshoe lemma.

Lemma 1.3 (The horseshoe lemma). Suppose that we are given a diagram

. . .

��

. . .

��

F ′2

��

F ′′2

��

F ′1

��

F ′′1

��

F ′0

��

F ′′0

��

0 // M ′ // M // M ′′ // 0

with the vertical columns free resolutions and the horizontal row exact. Then set Fi = F ′i ⊕ F ′′i . Then one
can use the Fi to form a commutative diagram:

. . .

��

. . .

��

. . .

��

0 // F ′2 //

��

F2

��

// F ′′2 //

��

0

0 // F ′1 //

��

F1

��

// F ′′1 //

��

0

0 // F ′0 //

��

F0

��

// F ′′0 //

��

0

0 // M ′ // M // M ′′ // 0

where the rows are exact (and are the obvious inclusion and projection maps) and each column is a free
resolution.

Proof. First define F0 → M using the fact that F0 is free (and making all the squares in the diagram
commute). To see that F0 →M is surjective, use the snake lemma. The kernels of F ′0 →M ′, F0 →M and
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F ′′0 → M also form a short exact sequence by the snake lemma. Use this sequence instead of M and apply
the snake lemma again. By induction, this will complete the proof. �

The main reason for introducing Tori(M,N) is because of the long exact sequence of Tor’s.

Theorem 1.2. Suppose that 0 → M ′ → M → M ′′ → 0 is a short exact sequence of A-modules and N is
any other A-module. Then there is a long exact sequence:

. . . // Tori(M
′, N) // Tori(M,N) // Tori(M

′′, N) // . . .

. . . . . . . . .

. . . // Tor2(M ′, N) // Tor2(M,N) // Tor2(M ′′, N) //

// Tor1(M ′, N) // Tor1(M,N) // Tor1(M ′′, N) //

// M ′ ⊗N // M ⊗N // M ′′ ⊗N // 0

here Torj(M
′′, N) maps to Torj−1(M ′′, N).

Proof. Use the horseshoe lemma to construct a diagram with exact rows

. . .

d′3
��

. . .

d3
��

. . .

d′′3
��

0 // F ′2 ⊗N //

d′2
��

F2 ⊗N

d2

��

// F ′′2 ⊗N //

d′′2
��

0

0 // F ′1 ⊗N //

d′1
��

F1 ⊗N

d1

��

// F ′′1 ⊗N //

d′′1
��

0

0 // F ′0 ⊗N //

d′0
��

F0 ⊗N

d0

��

// F ′′0 ⊗N //

d′′0
��

0

0 0 // 0 // 0 // 0

Note that the higher rows are exact on the left since F ′′i is free (or since the rows were split exact before
tensoring). Note we replaced the bottom row from the horseshoe lemma with zeroes.

It follows the fact that the columns are complexes that we have a commutative diagram with exact rows:

F ′
i⊗N

d′i+1(F
′
i+1⊗N)

a

��

// Fi⊗N
di+1(Fi+1⊗N)

b

��

// F ′′
i ⊗N

d′′i+1(F
′′
i+1⊗N)

c

��

// 0

0 // ker(d′i−1) // ker(di−1) // ker(d′′i−1)

It is not difficult to see that the cokernel of a is Tori(M
′, N), the cokernel of b is Tori(M,N) and the cokernel

of c is Tori(M
′′, N). But one can also check easily that the kernel of a is Tori+1(M ′, N), the kernel of b

is Tori+1(M,N) and the kernel of c is Tori+1(M ′′, N). An application of the snake lemma completes the
proof. �

2. Ext

Suppose that F• → M is a free resolution of an A-module M . Fix another A-module N and apply the
functor HomA(·, N). This gives us a complex:

0
d0−→ HomA(F0, N)

d1−→ HomA(F1, N)
d2−→ HomA(F2, N)

d3−→ . . .

noting that HomA(·, N) reverses arrows.

Definition 2.1. We define ExtiA(M,N) to be ker di+1/ ker di.
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Proposition 2.1. With M , N and A as above, we have:

(i) ExtiA(M,N) is independent of the choice of free resolution for M .
(ii) ExtiA(−, N) is a functor. In particular, if M → M ′ is a map of modules, then there is an induced

map

ExtiA(M ′, N)→ ExtiA(M,N).

(iii) Ext0A(M,N) ∼= HomA(M,N).

Just as before, we have long exact sequences for Ext.

Theorem 2.2 (Long exact sequences for Ext #1). Suppose that 0→M ′ →M →M ′′ → 0 is a short exact
sequence of A-modules and N is any other A-module. Then there is a long exact sequence

0 // HomA(M ′′, N) // HomA(M,N) // HomA(M ′, N)

// Ext1A(M ′′, N) // Ext1A(M,N) // Ext1A(M ′, N)

// Ext2A(M ′′, N) // Ext2A(M,N) // Ext2A(M ′, N)

// Ext3A(M ′′, N) // . . .

Proof. It is the same as the proof for Tor. �

We’d like to obtain for Ext a number of our other easy results for Tor. First we need a a little bit of
framework.

Definition 2.3. An A-module P is called projective if any of the following equivalent conditions are satisfied:

• The functor HomA(P, ·) is an exact functor.
• If M →M ′′ is surjective, then so is HomA(P,M)→ HomA(P,M ′′).
• If α : M → M ′′ is surjective and β : P → M ′′ is any map, then there exists a map γ making the

diagram commute:

P

β

��

∃γ

}}

M
α
// // M ′′

It is easy to see that free modules are projective.

Proposition 2.2. If F• → M is a projective resolution of M (like a free resolution, but only require that
the Fi are projective instead of free), then one still can compute ExtiA(M,N) as above using the projective
resolution instead.

There is a dual definition.

Definition 2.4. An A-module I is called injective if any of the following equivalent conditions are satisfied:

• The functor HomA(·, I) is an exact functor.
• If M ′ →M is injective, then HomA(M, I)→ HomA(M ′, I) is surjective.
• If α : M ′ → M is injective and β : M ′ → I is any map, then there exists a map γ making the

diagram commute:

I

M ′ �
�

α
//

β

OO

M

∃γ
aa

Free modules are definitely not injective modules in general. However, injective modules are ubiquitous.

Proposition 2.3. Given any module M , there exists an injective module I and an injection M ↪→ I.
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The previous condition is called having enough injectives. It follows that for any module M , that there
exists an exact sequence

0→M → I0 → I1 → I2 → I3 → . . .

Indeed, start with M → I0 and set K0 = I0/M to be the cokernel. Then find an injective module I1 ⊇ K0.
This gives us

0→M → I0 → I1

exact. Now set I2 to be an injective module containing I1/ Image(I0) which yields 0 → M → I0 → I1 →
I2 → . . . as desired. This is called an injective resolution of M and is denoted by I• (without the map from
M) or M → I•.

Given modules M and N , take an injective resolution N → I• of N . Apply the functor HomA(M, ·) to
I•. This gives us a complex

0
d0−→ HomA(M, I0)

d1−→ HomA(M, I1)
d2−→ HomA(M, I2)

d3−→ . . .

Definition 2.5 (Ext redux). With notation as above, we define ExtiA(M,N) to be ker(di+1)/ Image(di). This
agrees with the previous definition.

Theorem 2.6 (Long exact sequence for Ext #2). Suppose that 0 → N ′ → N → N ′′ → 0 is a short exact
sequence of A-modules and M is any other A-module. Then there is a long exact sequence:

0 // HomA(M,N ′) // HomA(M,N) // HomA(M,N ′′)

// Ext1A(M,N ′) // Ext1A(M,N) // Ext1A(M,N ′′)

// Ext2A(M,N ′) // Ext2A(M,N) // Ext2A(M,N ′′)

// Ext3A(M,N ′) // . . .

Proof. The proof is again the same as before (except one uses injective modules instead of projectives/free
modules). �


