
HOMEWORK # 7

DUE FRIDAY DECEMBER 9TH

MATH 538 FALL 2011

1. Suppose that A is a ring and that M and N are A-modules. A module L together with a short exact sequence
0 → M → L → N → 0 is called an extension of M and N . For example, M ⊕ N is an extension of M and N
with the usual short exact sequence (it is called the trivial extensions). We say that two extensions L and L′ are
equivalent if there is a commutative diagram:

0 // M //

id

��

L //

∼
��

N //

id

��

0

0 // M // L′ // N // 0

Prove that there is a bijective correspondence between equivalence classes of extensions and elements of Ext1(N,M).
Additionally, prove that under this correspondence, the element 0 ∈ Ext1(N,M) corresponds to the trivial exten-
sion.

Solution: I don’t want to write down a proof of this. Please see either:

• Theorem 3.4.3 in Homological Algebra by Weibel.
• Theorem 12 on page 754 of Abstract Algebra, 2nd edition by Dummit and Foote.
• Google.

2. Let R = k[x, y, z] where k is a field. Prove that x, y(1−x), z(1−x) is a regular sequence on R but y(1−x), z(1−
x), x is not a regular sequence on R.

Solution: Indeed, the first sequence creates module k[y, z] on which y(1 − x) = y is a regular element and
z(1 − x) = z is also a regular element (the two elements clearly form a regular sequence). However, reversing the
order, certainly y(1− x) is a regular element, but z(1− x) is not a regular element on k[x, y, z]/〈y(1− x)〉. Indeed,
multiplying it by y gives us zero.

3. Suppose that x1, . . . , xt ∈ A is a regular sequence on a module M . Prove that TorA1 (M,A/〈x1, . . . , xt〉) = 0.

Solution: We do this by induction on t, the length of the sequence. Then we have a short exact sequence:

0→ 〈x1〉
·x1−−→ A→ A/〈x1〉 → 0

from which we obtain the long exact sequence:

TorA1 (M,A)→ TorA1 (M,A/〈x1〉)→ 〈x1〉 ⊗A M
f−→M

Now, TorA1 (M,A) = 0 since A is free (and thus is its own free resolution). So it suffices to show that 〈x1〉⊗AM
f−→M

is injective. It might be that 〈x1〉 is not isomorphic to A since we don’t know that x1 itself is a regular element
on A (just on M). However, 〈x1〉 is still a cyclic module. Indeed, it is isomorphic to A′ = A/AnnA(x1) and in
particular is itself an A′-module. But x1 is a regular element on M , so that if z ∈ AnnA(x1), then for any m ∈M ,
x1(zm) = (x1z)m = 0 so that zm = 0 as well. Thus M is naturally an A′-module. It is easy to see then that

〈x1〉 ⊗A M = 〈x1〉 ⊗A′ M.

In particular, the map 〈x1〉 ⊗A M →M is identified with

M ∼= A′ ⊗A′ M ∼= 〈x1〉 ⊗A′ M →M

which is clearly just multiplication by x1. In particular, the map f above is injective which proves that

TorA1 (M,A/〈x1〉) = 0.
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Now, the general case is similar, we have a short exact sequence:

0→ 〈x1, . . . , xn〉
〈x1, . . . , xn−1〉

→ A

〈x1, . . . , xn−1〉
→ A

〈x1, . . . , xn〉
→ 0.

Tensoring with M gives us a long exact sequence

TorA1

(
M,

A

〈x1, . . . , xn−1〉

)
→ TorA1

(
M,

A

〈x1, . . . , xn−1〉

)
→

(
M ⊗A

〈x1, . . . , xn〉
〈x1, . . . , xn−1〉

)
→

(
M ⊗ A

〈x1, . . . , xn−1〉

)
Again, now by induction, TorA1

(
M, A
〈x1,...,xn−1〉

)
= 0 and so we merely need to show the injectivity of(

M ⊗A
〈x1, . . . , xn〉
〈x1, . . . , xn−1〉

)
→

(
M ⊗ A

〈x1, . . . , xn−1〉

)
.

Now, set B = A/〈x1, . . . , xn−1〉 and N = M ⊗A B, certainly(
M ⊗A

〈x1, . . . , xn〉
〈x1, . . . , xn−1〉

)
∼= M ⊗A 〈xn〉B ∼= (M ⊗A B)⊗B 〈xn〉B ∼= N ⊗B 〈x1〉B

and we need to show that this injects into N . But xn is a regular element on N , and so the argument in the base
case of the induction implies the desired injection.

4. Prove that the subalgebra S = k[u4, u3v, uv3, v4] ⊆ k[u, v] is not Cohen-Macaulay but thatR = k[u4, u3v, u2v2, uv3, v4]
is Cohen-Macaulay.

Solution: Indeed, first we notice that in both cases, S[u−4] ∼= R[u−4] since u3v/u4 = v/u and so u2v2 =
u4(v/u)2. Furthermore, S[u−4] = k[u4, u−4, v/u] ∼= k[a, a−1, b] for some algebraically independent a and b. That
object is a polynomial ring and easily seen to be regular (especially over an algebraically closed field, but also in
general). In particular, S[u−4] is Cohen-Macaulay. Likewise S[v−4] is Cohen-Macaulay. Thus the only place which
is of interest is after localizing at ideals which contain u4 and v4. There is only one such idea, the origin. In
particular, it is harmless to localize both rings at the origin m. Indeed, from here on out m will denote the obvious
origin ideal in any polynomial ring generated by the monomials.

Now, we mod out Sm by u4 (which is itself a regular element since Sm is an integral domain) and notice that
clearly u3v, uv3 are both nilpotent. Furthermore, we notice that (u3v)2 is not zero in Sm/〈u4〉 since it is equal to
u4(u2v2) but u2v2 is not an element of Sm. However, (u3v)2v4 = (uv3)2u4 = 0 in Sm/〈u4〉. In particular v4 is
also a zero divisor. But now consider any polynomial f(b, d, e) ∈ Sm/〈v4〉 in the monomials b = u3v, d = uv3 and
e = v4. Then consider fm for m � 0. The only way this is non-zero is if f has a λet term for some λ 6= 0. Then
fm = λmetm (all the other terms are nilpotent). Clearly fm 6= 0 in this case but then it is also a zero divisor (since
it kills b = (u3v)2). Thus f(fm−1(u3v)2) = 0 as well and so f is a zero divisor. We have just proven that the depth
of Sm/〈u4〉 is zero and so Sm has depth 1.

Now, I finally claim that this ring has dimension 2. Indeed, this is easy to see since k[u4, v4]m ⊆ k[u4, u3v, uv3, v4]m
is clearly a finite map (since u3v, uv3 are certainly integral over k[u4, v4]). Note that the m ideals are distinct max-
imal ideals. Thus Sm has dimension 2 and so it is not Cohen-Macaulay.

Now we need to show that R is Cohen-Macaulay. Indeed, the same argument as immediately above implies
that it is 2 dimensional at the origin and we already know it is Cohen-Macaulay outside of the origin by the first
paragraph. Thus we merely need to show that v4 is a regular element in R/〈u4〉. Here’s one approach. Consider
the extension A = k[u4, v4] ⊆ k[u4, u3v, u2v2, uv3, v4] = R. I claim that R is a free A-module of rank 4. The basis
is {1, u3v, u2v2, uv3}. It is easy to see that these elements are linearly independent over A (based on the exponents
mod 4). On the other hand, they are also a spanning set (since again, all needed exponent combinations modulo
4 are obtained). But since R is a free A-module, since A is Cohen-Macaulay at the origin, so is R (any A-regular
sequence becomes an R-regular sequence). This completes the proof.


