HOMEWORK # 6
DUE FRIDAY NOVEMBER 18TH

MATH 538 FALL 2011

1. Let A be a ring and suppose that a is an ideal. Define a ring G4(A) = ©2° ja"/a"*! where a := A. This is
a graded ring with multiplication induced by multiplication on the Rees-algebra. If A is Noetherian, prove that
G(A) is also Noetherian and also that G4(A) is isomorphic to G3(A). This ring is called the associated graded ring.

Solution: The generators of a are elements of the degree-1 part of G(A). In fact, it is easy to see that they
generate G(A) as an A-algebra. Now, a is finitely generated since A is Noetherian, this means that G(A) is a
finitely generated A-algebra. By Hilbert’s basis theorem, G(A) is Noetherian, this proves the first part.

For the second statement, simply observe that

Gal(A) = Brzod™ /6" = @,500" /a™+ = G(A).

2. Let A be a Noetherian ring, a C A an ideal and A the a-adic completion. For any € A, let & denote the image
of zinA. Show that if # is not a zero divisor in A, then # is not a zero divisor in A. However, give an example
where A is an integral domain but A is not.

Solution: Consider the exact sequence:
045 A
Tensoring with A (which is flat) yields
A5 A
which proves that Z is not a zero-divisor.

For the example, consider R = k[z] (which is certainly a domain) completed along the ideal (z(x — 1)) =
(x) N (x —1). Now, we see (basically by the Chinese Remainder Theorem) that

kla] /(e = 1)" = kla] /(2" (x = 1)") = k[z]/(2") @ k[z]/{x = 1)"

In particular, it follows that k[m]@m\@,n = klx](yy @ k[z](z—1). But the right side is not a domain since it is a
direct sum of two non-zero rings.

3. Let (R, m) be a local ring and assume that R = R (in other words, R is m-adically complete). For any polynomial
f € R[z], let f denote the image of f in (R/m)[z |. Hensel’s lemma says the following: if f(z) is monic of degree n
and if there exist coprime monic polynomials g, h € (R/m)[z] of degrees r,n — r with f = gh then we can lift g, h
back to monic polynomials g, h € R[z] such that f = gh.

Assume Hensel’s lemma without proof (or read Matsumura).

(i) Deduce from Hensel’s lemma that if f has a root of order 1 at a € (R/m)[z]. Then f has a root of order
1, a € A such that « = a mod m.
(ii) Prove that 2 is a square in the ring of 7-adic integers.

Solution: As far as I can tell, there is nothing to prove for (i). In particular, factor f: (x — a)g and then lift.
Note we used the fact that g does NOT have a root at « (in particular, that (z — «) and g are coprime).
For (ii), we let R = Z7 be the 7-adic integers. Consider the element 2 — 2 € R[z]. This has a simple root
3 € Z/7[x]. Indeed, 22 —2 = (2 — 3)(z — 4). Thus 22 — 2 has a root of order 1 in R[z] also by (i), and in particular,
it has a root. That solution is the desired square root of 2.
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4. [The Snake Lemma] Suppose that R is a ring and that A, B,C, D, E, F are R-modules. Suppose that:
B

0 A—23B C 0
I B
0 D E F 0
vy 4

is a diagram where each square is commutative and the rows are exact. Set K’ and C’ to be the kernel and cokernel
of . Set K and C to be the kernel and cokernel of 4. Finally set K" and C” be the kernel and cokernel of p.

Show that there is a long exact sequence 0 -+ K’ — K — K" 4 0" - C — C" — 0 where the maps not labeled
d are induced by «, 8, v, and §. This is not difficult, but it requires a lot of diagram chasing.

Solution: Certainly left to the reader.

5. Suppose that R is a ring and M is an R-module. A sequence of elements x1,...,x, € R is called M -regular if
x; is a non-zero divisor on M/({x1,...x;—1)M) for each i and also if M # (x1,...,x,)M.
Now suppose that 0 — M’ = M ﬁ) M" — 0 is a short exact sequence of R-modules and that zq,...,x, is a

sequence of elements which is M’-regular and M"-regular. Prove it is M-regular also.

Solution: I will do this in a slightly more general way. First I will prove a lemma.

Lemma. With the short exact sequence as above, suppose that x € R is a regular element on M’ and M". Then
x is reqular on M and furthermore, there exists a short exact sequence
0— M /zM' — M/zM — M" JxM" — 0
induced from the above sequence.
Proof. Choose m € M and suppose that xm = 0. It follows that z8(m) = S(am) = 0 and so 3(m) = 0 by the

regularity of  on M”. Thus there exists m’ € M’ such that a(m’) = m. Then a(zm’) = za(m’) = zm = 0 and
so since « is injective, xm’ = 0 which implies that m’ = 0 by the regularity of x on M’. Thus

0=a(0)=a(m)=m

which completes the proof of the first statement.
For the second, I will identify M’ with its image in M. We certainly have an exact sequence:

0
)

M JaM' 5 M/jaM 25 M jaM" — 0
obtained by tensoring our original sequence with R/(z). Thus it is sufficient to show that M "M — M/xM is
injective. Consider an element m’ € M'/xM' (with m’/ corresponding to m’ € M) and suppose that @(m’) = 0.
Thus a(m') € M and so we may write a(m') = an for some n € M. Then, 8(n) € M”. Notice that

zB(n) = Blan) = Bla(n’)) =0
It follows that B(n) = 0 since x is regular on M”. Thus, by exactness, there exists n’ € M’ such that a(n’) = n.
/ =

But then a(zn’) = xn = a(m’) so that xn’ = m’ by the injectivity of a. Thus m’ € xM’ and so m’ = 0 as
desired. g

Now, we apply induction and we see immediately that x; is regular on M, that x5 is regular on M /z1 M, that
x3 is regular on M /(xz1,x2) M and so on. This proves the first part of the regularity definition. For the second part,
notice that

M/{x1,...,x0)M — M" J{zy,... 2,)M"
is surjective by the right-exactness of tensor. But M"/(x1,...,x,)M" is non-zero by hypothesis. Thus
0# M/ (x1,...,0n)M

which completes the proof.



