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MATH 538 FALL 2011

1. Let A be a ring and suppose that a is an ideal. Define a ring Ga(A) = ⊕∞n=0a
n/an+1 where a0 := A. This is

a graded ring with multiplication induced by multiplication on the Rees-algebra. If A is Noetherian, prove that
G(A) is also Noetherian and also that Ga(A) is isomorphic to Gâ(Â). This ring is called the associated graded ring.

Solution: The generators of a are elements of the degree-1 part of G(A). In fact, it is easy to see that they
generate G(A) as an A-algebra. Now, a is finitely generated since A is Noetherian, this means that G(A) is a
finitely generated A-algebra. By Hilbert’s basis theorem, G(A) is Noetherian, this proves the first part.

For the second statement, simply observe that

Gâ(Â) = ⊕n≥0ân/ân+1 ∼= ⊕n≥0an/an+1 = G(A).

2. Let A be a Noetherian ring, a ⊆ A an ideal and Â the a-adic completion. For any x ∈ A, let x̂ denote the image
of xinÂ. Show that if x is not a zero divisor in A, then x̂ is not a zero divisor in Â. However, give an example
where A is an integral domain but Â is not.

Solution: Consider the exact sequence:

0→ A
·x−→ A

Tensoring with Â (which is flat) yields

0→ Â
·x̂−→ Â

which proves that x̂ is not a zero-divisor.
For the example, consider R = k[x] (which is certainly a domain) completed along the ideal 〈x(x − 1)〉 =

〈x〉 ∩ 〈x− 1〉. Now, we see (basically by the Chinese Remainder Theorem) that

k[x]/〈x(x− 1)〉n = k[x]/〈xn(x− 1)n〉 ∼= k[x]/〈xn〉 ⊕ k[x]/〈x− 1〉n

In particular, it follows that ̂k[x]〈x〉∩〈x−1〉 ∼= k̂[x]〈x〉 ⊕ ̂k[x]〈x−1〉. But the right side is not a domain since it is a
direct sum of two non-zero rings.

3. Let (R,m) be a local ring and assume that R̂ = R (in other words, R is m-adically complete). For any polynomial

f ∈ R[x], let f̃ denote the image of f in (R/m)[x]. Hensel’s lemma says the following: if f(x) is monic of degree n

and if there exist coprime monic polynomials g̃, h̃ ∈ (R/m)[x] of degrees r, n− r with f̃ = g̃h̃ then we can lift g̃, h̃
back to monic polynomials g, h ∈ R[x] such that f = gh.

Assume Hensel’s lemma without proof (or read Matsumura).

(i) Deduce from Hensel’s lemma that if f̃ has a root of order 1 at α ∈ (R/m)[x]. Then f has a root of order
1, a ∈ A such that α = a mod m.

(ii) Prove that 2 is a square in the ring of 7-adic integers.

Solution: As far as I can tell, there is nothing to prove for (i). In particular, factor f̃ = (x − α)g̃ and then lift.
Note we used the fact that g̃ does NOT have a root at α (in particular, that (x− α) and g̃ are coprime).

For (ii), we let R = Z7 be the 7-adic integers. Consider the element x2 − 2 ∈ R[x]. This has a simple root
3 ∈ Z/7[x]. Indeed, x2− 2 = (x− 3)(x− 4). Thus x2− 2 has a root of order 1 in R[x] also by (i), and in particular,
it has a root. That solution is the desired square root of 2.
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4. [The Snake Lemma] Suppose that R is a ring and that A,B,C,D,E, F are R-modules. Suppose that:

0 // A
α //

ϕ

��

B
β
//

ψ

��

C

ρ

��

// 0

0 // D
γ
// E

δ
// F // 0

is a diagram where each square is commutative and the rows are exact. Set K ′ and C ′ to be the kernel and cokernel
of ϕ. Set K and C to be the kernel and cokernel of ψ. Finally set K ′′ and C ′′ be the kernel and cokernel of ρ.

Show that there is a long exact sequence 0→ K ′ → K → K ′′
d−→ C ′ → C → C ′′ → 0 where the maps not labeled

d are induced by α, β, γ, and δ. This is not difficult, but it requires a lot of diagram chasing.

Solution: Certainly left to the reader.

5. Suppose that R is a ring and M is an R-module. A sequence of elements x1, . . . , xn ∈ R is called M -regular if
xi is a non-zero divisor on M/(〈x1, . . . xi−1〉M) for each i and also if M 6= 〈x1, . . . , xn〉M .

Now suppose that 0 → M ′
α−→ M

β−→ M ′′ → 0 is a short exact sequence of R-modules and that x1, . . . , xn is a
sequence of elements which is M ′-regular and M ′′-regular. Prove it is M -regular also.

Solution: I will do this in a slightly more general way. First I will prove a lemma.

Lemma. With the short exact sequence as above, suppose that x ∈ R is a regular element on M ′ and M ′′. Then
x is regular on M and furthermore, there exists a short exact sequence

0→M ′/xM ′ →M/xM →M ′′/xM ′′ → 0

induced from the above sequence.

Proof. Choose m ∈ M and suppose that xm = 0. It follows that xβ(m) = β(xm) = 0 and so β(m) = 0 by the
regularity of x on M ′′. Thus there exists m′ ∈ M ′ such that α(m′) = m. Then α(xm′) = xα(m′) = xm = 0 and
so since α is injective, xm′ = 0 which implies that m′ = 0 by the regularity of x on M ′. Thus

0 = α(0) = α(m′) = m

which completes the proof of the first statement.
For the second, I will identify M ′ with its image in M . We certainly have an exact sequence:

M ′/xM ′
α−→M/xM

β−→M ′′/xM ′′ → 0

obtained by tensoring our original sequence with R/〈x〉. Thus it is sufficient to show that M ′/xM ′ → M/xM is
injective. Consider an element m′ ∈ M ′/xM ′ (with m′ corresponding to m′ ∈ M) and suppose that α(m′) = 0.
Thus α(m′) ∈ xM and so we may write α(m′) = xn for some n ∈M . Then, β(n) ∈M ′′. Notice that

xβ(n) = β(xn) = β(α(n′)) = 0

It follows that β(n) = 0 since x is regular on M ′′. Thus, by exactness, there exists n′ ∈ M ′ such that α(n′) = n.
But then α(xn′) = xn = α(m′) so that xn′ = m′ by the injectivity of α. Thus m′ ∈ xM ′ and so m′ = 0 as
desired. �

Now, we apply induction and we see immediately that x1 is regular on M , that x2 is regular on M/x1M , that
x3 is regular on M/〈x1, x2〉M and so on. This proves the first part of the regularity definition. For the second part,
notice that

M/〈x1, . . . , xn〉M →M ′′/〈x1, . . . , xn〉M ′′

is surjective by the right-exactness of tensor. But M ′′/〈x1, . . . , xn〉M ′′ is non-zero by hypothesis. Thus

0 6= M/〈x1, . . . , xn〉M
which completes the proof.


