HOMEWORK # 6 DUE FRIDAY NOVEMBER 18TH

MATH 538 FALL 2011

1. Let A be a ring and suppose that \mathfrak{a} is an ideal. Define a ring $G_{\mathfrak{a}}(A) = \bigoplus_{n=0}^{\infty} \mathfrak{a}^n / \mathfrak{a}^{n+1}$ where $\mathfrak{a}^0 := A$. This is a graded ring with multiplication induced by multiplication on the Rees-algebra. If A is Noetherian, prove that G(A) is also Noetherian and also that $G_{\mathfrak{a}}(A)$ is isomorphic to $G_{\mathfrak{a}}(\hat{A})$. This ring is called the *associated graded ring*.

2. Let A be a Noetherian ring, $\mathfrak{a} \subseteq A$ an ideal and \hat{A} the \mathfrak{a} -adic completion. For any $x \in A$, let \hat{x} denote the image of $xin\hat{A}$. Show that if x is not a zero divisor in A, then \hat{x} is not a zero divisor in \hat{A} . However, give an example where A is an integral domain but \hat{A} is not.

3. Let (R, \mathfrak{m}) be a local ring and assume that $\hat{R} = R$ (in other words, R is \mathfrak{m} -adically complete). For any polynomial $f \in R[x]$, let \tilde{f} denote the image of f in $(R/\mathfrak{m})[x]$. Hensel's lemma says the following: if f(x) is monic of degree n and if there exist coprime monic polynomials $\tilde{g}, \tilde{h} \in (R/\mathfrak{m})[x]$ of degrees r, n - r with $\tilde{f} = \tilde{g}\tilde{h}$ then we can lift \tilde{g}, \tilde{h} back to monic polynomials $g, h \in R[x]$ such that f = gh.

Assume Hensel's lemma without proof (or read Matsumura).

- (i) Deduce from Hensel's lemma that if \tilde{f} has a root of order 1 at $\alpha \in (R/\mathfrak{m})[x]$. Then f has a root of order 1, $a \in A$ such that $\alpha = a \mod \mathfrak{m}$.
- (ii) Prove that 2 is a square in the ring of 7-adic integers.
- 4. [The Snake Lemma] Suppose that R is a ring and that A, B, C, D, E, F are R-modules. Suppose that:

is a diagram where each square is commutative and the rows are exact. Set K' and C' to be the kernel and cokernel of φ . Set K and C to be the kernel and cokernel of ψ . Finally set K'' and C'' be the kernel and cokernel of ρ .

Show that there is a long exact sequence $0 \to K' \to K \to K'' \xrightarrow{d} C' \to C \to C'' \to 0$ where the maps not labeled d are induced by α , β , γ , and δ . This is not difficult, but it requires a lot of diagram chasing.

5. Suppose that R is a ring and M is an R-module. A sequence of elements $x_1, \ldots, x_n \in R$ is called *M*-regular if x_i is a non-zero divisor on $M/(\langle x_1, \ldots, x_{i-1} \rangle M)$ for each i and also if $M \neq \langle x_1, \ldots, x_n \rangle M$.

Now suppose that $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of *R*-modules and that x_1, \ldots, x_n is a sequence of elements which is M'-regular and M''-regular. Prove it is *M*-regular also.