HOMEWORK # 5 DUE FRIDAY NOVEMBER 4TH

MATH 538 FALL 2011

1. Use Nakayma's lemma and results from a worksheet to show that if (A, \mathfrak{m}) is a Noetherian local ring, then the maximal ideal \mathfrak{m} is principal if and only if $\mathfrak{m}/\mathfrak{m}^2$ is 1-dimensional over $k = R/\mathfrak{m}$.

Solution: Clearly if \mathfrak{m} is principal with generator t, then $\mathfrak{m}/\mathfrak{m}^2$ is a cyclic *R*-module with generator $\langle t \rangle$. But since anything in \mathfrak{m} annihilates $\mathfrak{m}/\mathfrak{m}^2$, it is 1-dimensional vector space over R/\mathfrak{m} .

Conversely, if $\mathfrak{m}/\mathfrak{m}^2$ is 1-dimensional, then from a Corollary to Nakayama's Lemma we know that a minimal generating set for the module $M = \mathfrak{m}$ is the same size as a basis for $M/\mathfrak{m}M = \mathfrak{m}/\mathfrak{m}^2$ completing the proof.

2. First some background:

Suppose that k is an algebraically closed field. Consider $k[\varepsilon] := k[t]/\langle t^2 \rangle$. Note Spec $k[\varepsilon]$ is just a single point. Thus one can think of $k[\varepsilon]$ as a point plus the data of (a single) tangent direction (which of course, if we are working over \mathbb{C} , is more than one real direction). Set $R = k[x_1, \ldots, x_n]/I$ to be a finitely generated k-algebra and suppose we are given a surjective k-algebra map $\varphi : R \to k[\varepsilon]$. We thus have

$$\{\mathrm{pt}\} = \operatorname{Spec} k[\varepsilon] \to \operatorname{Spec} R$$

so we have determined a point on Spec R and the map φ should also be viewed as determining a tangent direction to that point.

Now we state the problem. Let k again be an algebraically closed field and choose $f \in k[x, y]$ an non-zero non-unit element such that

$$f = g + h$$

where g = ax + by is a linear polynomial (or possibly zero) and $h \in \langle x, y \rangle^2$. Set $R = k[x, y]/\langle f \rangle$. Prove that the local ring $R_{\langle x, y \rangle}$ is a DVR (discrete valuation ring) if and only if there is only one surjective map $R \to k[\varepsilon]$ which maps the unique point of Spec $k[\varepsilon]$ to the point $\langle x, y \rangle$, up to a scaling factor (you should figure out exactly what I mean, I am being purposefully vague).

Solution: Suppose that $R_{\langle x,y\rangle} = S$ is a DVR with $\mathfrak{m} = \langle x,y\rangle = \langle t\rangle$. Clearly we have a natural map $S \to S/\langle t^2 \rangle = k \oplus k \cdot t \cong k[\varepsilon]$. The isomorphism is not unique though. Indeed, we can have a different isomorphism $S/\langle t^2 \rangle \cong k[\varepsilon]$ which sends t to $\lambda\varepsilon$ for each $\lambda \in k \setminus 0$. This is uniqueness up to scaling (the choice of λ). On the other hand, any surjective map $S \to k[\varepsilon]$ must be of this form (since k must be sent to k, and a multiple of t must clearly be sent to a multiple of ε). It then follows from the universal property of localization that any surjective map $\varphi : R \to k[\varepsilon]$ such that $\langle x, \rangle = \varphi^{-1}(\langle \varepsilon \rangle)$ factors through the natural map $R \to S$ and so the first direction is complete.

Conversely, if R is not a DVR, then $x, y \in \langle x, y \rangle$ are both needed as generators. Then with the notation as above, we have two maps $\varphi_i : S \to k[\varepsilon]$ where $\varphi_1(x) = \varepsilon$, $\varphi_1(y) = 0$ and also $\varphi_2(x) = 0$, $\varphi_2(y) = \varepsilon$. In fact, we can also scale these maps as before. But there is no way to scale φ_1 to get φ_2 in this way.

I originally intended a third equivalence, where one can show that this happens if and only if either $a \neq 0$ or $b \neq 0$. I removed it because I thought there was already enough going on in this problem. This is pretty easy to see though, either $a \neq 0$ or $b \neq 0$ is basically the same as requiring that the map to $k[\varepsilon]$ is not the zero map.

HOMEWORK # 5

3. Give an example of an inclusion of Noetherian rings $R \subseteq S$ such that R and S have the same Krull dimension, S is a finitely generated R-algebra, S NOT a finite R-module, and

- (a) Spec $S \to \text{Spec } R$ is not surjective.
- (b) Spec $S \to \text{Spec } R$ is surjective.

Solution:

(a) $R = k[x] \subseteq k[x, x^{-1}] = S$

(b) $R = k[x] \subseteq k[x, x^{-1}] \oplus k[x]/\langle x \rangle = S$ where the map on the first coordinate is the obvious inclusion and the map to the second coordinate is the canonical surjection.

4. Suppose that G is a finite group of automorphisms acting on a ring A and let A^G denote the subring of G-invariant elements (all $x \in A$ such that $\sigma(x) = x$ for all $\sigma \in G$). Prove that A is an integral extension of A^G .

Solution: Fix $x \in A$. Consider the polynomial $f(t) = \prod_{\sigma \in G} (t - \sigma(x)) \in A[t]$. Clearly f(t) is monic and f(x) = 0 since id $\in G$. We only need to show that $f(t) \in A^G[t]$. But this is easy since the coefficients of f(t) are symmetric functions in $\sigma(x)$ (applying another σ will only permute the elements).

5. Suppose that R is a ring and I is an ideal. The integral closure¹ of I is the set

$$\left\{ z \in R \quad | \quad \text{there exists } a_1 \in I^1, \, a_2 \in I^2, \, a_3 \in I^3, \dots, a_{n-1} \in I^{n-1}, a_n \in I^n \\ \text{ such that } z^n + a_1 z^{n-1} + \dots + a_{n-1} z^1 + a_n = 0. \right\}$$

It is usually denoted by \overline{I} .

- (i) Prove that \overline{I} is an ideal containing I.
- (ii) Prove that $\langle x^2, y^2 \rangle \subseteq k[x, y]$ is not integrally closed and find its integral closure.
- (iii) Prove that $\overline{(\overline{I})} = \overline{I}$.
- (iv) Suppose that W is a multiplicative system, prove that $W^{-1}\overline{I} = \overline{W^{-1}I}$.

Solution:

(i) Consider the following graded ring which we introduced in our study of completion, the Rees algebra $R \oplus I \oplus I^2 \oplus I^3 \oplus \cdots = R \oplus It \oplus I^2t^2 \oplus I^3t^3 \oplus \cdots = R[It]$ (the *t* lets me keep track of what degree of the graded ring I'm in). Consider then the element $zt \in R[It]$. To say that $z \in \overline{I}$ implies that there exist a_1, \ldots, a_n as above such that

$$z^{n} + a_{1}z^{n-1} + \dots + a_{n-1}z^{1} + a_{n} = 0.$$

Multiplying through by t^n gives us

$$(zt)^{n} + a_{1}t(zt)^{n-1} + \dots + a_{n-1}t^{n-1}(zt)^{1} + a_{n}t^{n} = 0.$$

In other words, it implies that $zt \in R[t]$ is integral over R[It]. Conversely, given any homogeneous degree one element of R[t] integral over R[It], one can find an equation like the one above (indeed, take whatever integral relation you construct and focus on the *n*th-degree). Thus zt is integral over R[It] if and only if $z \in \overline{I}$. This show that \overline{I} is closed under addition (since we already know that the integral closure of a ring in an over-ring is another ring).

Closure under multiplication is trivial since

$$z^{n} + a_{1}z^{n-1} + \dots + a_{n-1}z^{1} + a_{n} = 0$$

implies

$$(rz)^{n} + a_{1}r(zr)^{n-1} + \dots + a_{n-1}r^{n-1}(zr)^{1} + a_{n}r^{n} = 0$$

This completes the proof of (i) since $a_i r^i \in I^i$ (since it's an ideal).

(ii) Indeed, this ideal is not integrally closed since clearly xy is a root of $t^2 - x^2y^2$. I claim that $\langle x^2, xy, y^2 \rangle$ is its integral closure. However, $\langle x^2, xy, y^2 \rangle$ already contains all polynomials whose minimal-degree term has degree ≥ 2 . On the other hand, for degree reasons it's clear that no polynomial with minimal-degree term

¹This is not in agreement with Atiyah-MacDonald, but in this case, Atiyah-MacDonald is in disagreement with the literature.

of degree ≤ 1 can be in the integral closure (write down the equation and pay attention to degrees). This completes the proof of (ii).

- (iii) This follows similarly to (i) using the Rees algebra idea again (integral over integral is still integral for rings).
- (iv) This follows similarly to the worksheet on integral closure of rings (probably it can also be done via the Rees-algebra trick).