
HOMEWORK # 5

DUE FRIDAY NOVEMBER 4TH

MATH 538 FALL 2011

1. Use Nakayma’s lemma and results from a worksheet to show that if (A,m) is a Noetherian local ring, then the
maximal ideal m is principal if and only if m/m2 is 1-dimensional over k = R/m.

Solution: Clearly if m is principal with generator t, then m/m2 is a cyclic R-module with generator 〈t〉. But
since anything in m annihilates m/m2, it is 1-dimensional vector space over R/m.

Conversely, if m/m2 is 1-dimensional, then from a Corollary to Nakayama’s Lemma we know that a minimal
generating set for the module M = m is the same size as a basis for M/mM = m/m2 completing the proof.

2. First some background:

Suppose that k is an algebraically closed field. Consider k[ε] := k[t]/〈t2〉. Note Spec k[ε] is just a
single point. Thus one can think of k[ε] as a point plus the data of (a single) tangent direction (which
of course, if we are working over C, is more than one real direction). Set R = k[x1, . . . , xn]/I to be
a finitely generated k-algebra and suppose we are given a surjective k-algebra map ϕ : R → k[ε].
We thus have

{pt} = Spec k[ε]→ SpecR

so we have determined a point on SpecR and the map ϕ should also be viewed as determining a
tangent direction to that point.

Now we state the problem. Let k again be an algebraically closed field and choose f ∈ k[x, y] an non-zero non-unit
element such that

f = g + h

where g = ax + by is a linear polynomial (or possibly zero) and h ∈ 〈x, y〉2. Set R = k[x, y]/〈f〉. Prove that the
local ring R〈x,y〉 is a DVR (discrete valuation ring) if and only if there is only one surjective map R → k[ε] which
maps the unique point of Spec k[ε] to the the point 〈x, y〉, up to a scaling factor (you should figure out exactly
what I mean, I am being purposefully vague).

Solution: Suppose that R〈x,y〉 = S is a DVR with m = 〈x, y〉 = 〈t〉. Clearly we have a natural map S →
S/〈t2〉 = k ⊕ k · t ∼= k[ε]. The isomorphism is not unique though. Indeed, we can have a different isomorphism
S/〈t2〉 ∼= k[ε] which sends t to λε for each λ ∈ k \ 0. This is uniqueness up to scaling (the choice of λ). On the
other hand, any surjective map S → k[ε] must be of this form (since k must be sent to k, and a multiple of t must
clearly be sent to a multiple of ε). It then follows from the universal property of localization that any surjective
map ϕ : R → k[ε] such that 〈x, 〉 = ϕ−1(〈ε〉) factors through the natural map R → S and so the first direction is
complete.

Conversely, if R is not a DVR, then x, y ∈ 〈x, y〉 are both needed as generators. Then with the notation as
above, we have two maps ϕi : S → k[ε] where ϕ1(x) = ε, ϕ1(y) = 0 and also ϕ2(x) = 0, ϕ2(y) = ε. In fact, we can
also scale these maps as before. But there is no way to scale ϕ1 to get ϕ2 in this way.

I originally intended a third equivalence, where one can show that this happens if and only if either a 6= 0 or
b 6= 0. I removed it because I thought there was already enough going on in this problem. This is pretty easy to
see though, either a 6= 0 or b 6= 0 is basically the same as requiring that the map to k[ε] is not the zero map.
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3. Give an example of an inclusion of Noetherian rings R ⊆ S such that R and S have the same Krull dimension,
S is a finitely generated R-algebra, S NOT a finite R-module, and

(a) SpecS → SpecR is not surjective.
(b) SpecS → SpecR is surjective.

Solution:
(a) R = k[x] ⊆ k[x, x−1] = S
(b) R = k[x] ⊆ k[x, x−1]⊕ k[x]/〈x〉 = S where the map on the first coordinate is the obvious inclusion and the

map to the second coordinate is the canonical surjection.

4. Suppose that G is a finite group of automorphisms acting on a ring A and let AG denote the subring of
G-invariant elements (all x ∈ A such that σ(x) = x for all σ ∈ G). Prove that A is an integral extension of AG.

Solution: Fix x ∈ A. Consider the polynomial f(t) =
∏
σ∈G(t − σ(x)) ∈ A[t]. Clearly f(t) is monic and

f(x) = 0 since id ∈ G. We only need to show that f(t) ∈ AG[t]. But this is easy since the coefficients of f(t) are
symmetric functions in σ(x) (applying another σ will only permute the elements).

5. Suppose that R is a ring and I is an ideal. The integral closure1 of I is the set{
z ∈ R | there exists a1 ∈ I1, a2 ∈ I2, a3 ∈ I3, . . . , an−1 ∈ In−1, an ∈ In

such that zn + a1z
n−1 + · · ·+ an−1z

1 + an = 0.
}

It is usually denoted by I.

(i) Prove that I is an ideal containing I.
(ii) Prove that 〈x2, y2〉 ⊆ k[x, y] is not integrally closed and find its integral closure.

(iii) Prove that (I) = I.

(iv) Suppose that W is a multiplicative system, prove that W−1I = W−1I.

Solution:

(i) Consider the following graded ring which we introduced in our study of completion, the Rees algebra
R ⊕ I ⊕ I2 ⊕ I3 ⊕ · · · = R ⊕ It ⊕ I2t2 ⊕ I3t3 ⊕ · · · = R[It] (the t lets me keep track of what degree of
the graded ring I’m in). Consider then the element zt ∈ R[It]. To say that z ∈ I implies that there exist
a1, . . . , an as above such that

zn + a1z
n−1 + · · ·+ an−1z

1 + an = 0.

Multiplying through by tn gives us

(zt)n + a1t(zt)
n−1 + · · ·+ an−1t

n−1(zt)1 + ant
n = 0.

In other words, it implies that zt ∈ R[t] is integral over R[It]. Conversely, given any homogeneous degree
one element of R[t] integral over R[It], one can find an equation like the one above (indeed, take whatever
integral relation you construct and focus on the nth-degree). Thus zt is integral over R[It] if and only if
z ∈ I. This show that I is closed under addition (since we already know that the integral closure of a ring
in an over-ring is another ring).

Closure under multiplication is trivial since

zn + a1z
n−1 + · · ·+ an−1z

1 + an = 0

implies

(rz)n + a1r(zr)
n−1 + · · ·+ an−1r

n−1(zr)1 + anr
n = 0.

This completes the proof of (i) since air
i ∈ Ii (since it’s an ideal).

(ii) Indeed, this ideal is not integrally closed since clearly xy is a root of t2 − x2y2. I claim that 〈x2, xy, y2〉 is
its integral closure. However, 〈x2, xy, y2〉 already contains all polynomials whose minimal-degree term has
degree ≥ 2. On the other hand, for degree reasons it’s clear that no polynomial with minimal-degree term

1This is not in agreement with Atiyah-MacDonald, but in this case, Atiyah-MacDonald is in disagreement with the literature.
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of degree ≤ 1 can be in the integral closure (write down the equation and pay attention to degrees). This
completes the proof of (ii).

(iii) This follows similarly to (i) using the Rees algebra idea again (integral over integral is still integral for
rings).

(iv) This follows similarly to the worksheet on integral closure of rings (probably it can also be done via the
Rees-algebra trick).


