HOMEWORK # 4 DUE WEDNESDAY OCTOBER 19TH

MATH 538 FALL 2011

1. Is the following true or false. If it is true, prove it. If it is false, give a counter-example. If R is a ring, M is an R-module and M_1 and M_2 are submodules of M such that $M = M_1 + M_2$, then $Ass(M) = Ass(M_1) \cup Ass(M_2)$.

2. Give an example of an ideal I which is not primary but which satisfies the following condition:

If $fg \in I$, then either $f^n \in I$ or $g^n \in I$ for some integer $n \gg 0$.

3. Suppose that I and J are ideals of a Noetherian ring A. Prove that if $JA_P \subseteq IA_P$ for every $P \in Ass(A/I)$, then $J \subseteq I$.

4. A topological space X is called *Noetherian* if every descending chain of closed sets eventually stabilizes. Suppose that R is a Noetherian ring and prove that Spec R is a Noetherian topological space. However, give an example of a ring R such that Spec R is Noetherian but R is *NOT* Noetherian.

5. Suppose that R is a Noetherian ring of characteristic p > 0. The Frobenius morphism on R is the ring homomorphism $F: R \to R$ defined by the rule $F(r) = r^p$. This is a ring homomorphism because $(x+y)^p = x^p + y^p$. Suppose now that I is a ring of R. Write $I = \langle r_1, \ldots, r_n \rangle$. We define $I^{[p]}$ to be the ideal $\langle r_1^p, \ldots, r_n^p \rangle$.

- (a) Prove that $I^{[p]}$ is independent of the choice of generators r_1, \ldots, r_n for I.
- (b) Suppose that Q is a prime ideal of R. Is it true that $Q^{[p]}$ is Q-primary? Prove or give a counter-example.
- (c) Suppose that $R = \mathbb{F}_p[x_1, \ldots, x_n]$. View R a module over itself via Frobenius, and use N to denote this module (in other words, $r.x = r^p x$ for $r \in R$ and $x \in N \cong R$). Show that N is a free module and exhibit a basis for N over R.
- (d) Suppose that I is an ideal of R. Show that $\langle F(I) \rangle = I^{[p]} \subseteq I$.
- (e^{**}) Suppose that $J \subseteq I$ are ideals of R (which you may now assume is an integral domain). Suppose that $G: I \to I$ is an additive map satisfying the rule $G(r,x) = r^p G(x)$. Is it true that $G(J) \subseteq J$?

As far as I know, (e^{**}) is an open problem. If it's true, I know of an easy (and publishable) corollary.