HOMEWORK # 3 DUE MONDAY OCTOBER 3RD

MATH 538 FALL 2011

1. Suppose that k is an algebraically closed field, and that R and S are two finite generated k algebras (in other words, $R = k[x_1, \ldots, x_m]/I$ and $S = k[y_1, \ldots, y_n]/J$. Prove that there is a natural bijection between m-Spec $R \otimes_k S$, the maximal ideals of the ring $R \otimes_k S$, with (m-Spec R) × (m-Spec S).

Hint: Consider the maps $R \to R \otimes_k S$ and $S \to R \otimes_k S$ which sends $r \mapsto r \otimes 1$ and $s \mapsto 1 \otimes s$ respectively. Use these maps to induce maps from m-Spec $R \otimes_k S$ to m-Spec R and m-Spec S respectively. Now take the product map.

Solution: Consider maps $f : R \to R \otimes_k S$ and $g : S \to R \otimes_k S$ as described in the hint. This gives us a map $(f^{\#} \times g^{\#}) : \text{m-Spec}(R \otimes_k S) \to (\text{m-Spec} R) \times (\text{m-Spec} S)$. We will call this map φ . We need to show it is bijective. We will use the letter A to denote the ring $R \otimes_k S$.

First we prove a lemma.

Lemma 0.1. If \mathfrak{m} is a maximal ideal of R and \mathfrak{n} is a maximal ideal of S, then $\mathfrak{c} := \langle f(\mathfrak{m}) \rangle + \langle g(\mathfrak{n}) \rangle = \mathfrak{m}A + \mathfrak{n}A$ is a maximal ideal of A.

Proof. Consider the map $f: R \to A$ and apply the functor $R/\mathfrak{m} \otimes_R \bullet$, we obtain

$$f': R/\mathfrak{m} \to R/\mathfrak{m} \otimes_R (R \otimes_k S) \cong (R/\mathfrak{m} \otimes_R R) \otimes_k S \cong R/\mathfrak{m} \otimes_k S \cong S \cong A/(\mathfrak{m} A)$$

This map is injective because S is a free k-module (in fact every module over a vector space is free). Now consider the map $\rho \circ g : S \to A \to A/(\mathfrak{m}A)$ which is an isomorphism by above and tensor with $\bullet \otimes_S S/\mathfrak{n}$ and obtain the isomorphism

$$g'': S/\mathfrak{n} \xrightarrow{\rho \circ g} A/(\mathfrak{m}A) \otimes_S S/\mathfrak{n} \cong (R/\mathfrak{m} \otimes_k S/\mathfrak{n}) \cong k \cong A/(\mathfrak{m}A + \mathfrak{n}A)$$

Thus $A/(\mathfrak{m}A + \mathfrak{n}A)$ is a field and so $\mathfrak{m}A + \mathfrak{n}A$ is maximal.

We first prove the injectivity so suppose that \mathfrak{a} and \mathfrak{b} are maximal ideals of $R \otimes_k S$ and that $\varphi(\mathfrak{a}) = \varphi(\mathfrak{b})$ (so $f^{-1}(\mathfrak{a}) = f^{-1}(\mathfrak{b})$ and likewise $g^{-1}(\mathfrak{a}) = g^{-1}(\mathfrak{b})$). Consider the ideal $\langle f(f^{-1}(\mathfrak{a})) \rangle + \langle g(g^{-1}(\mathfrak{a})) \rangle = \langle f(f^{-1}(\mathfrak{b})) \rangle + \langle g(g^{-1}(\mathfrak{b})) \rangle$. This is a maximal ideal, by the Lemma, contained inside both \mathfrak{a} and \mathfrak{b} and so the injectivity of φ is done.

Now we prove the surjectivity of φ . But this is easy since given \mathfrak{m} and \mathfrak{n} and constructing \mathfrak{c} as in the lemma, it is clear that $f^{-1}(\mathfrak{c}) \supseteq \mathfrak{m}$ (and so we must have equality) and likewise for \mathfrak{n} .

2. Show that problem 1. is false if k is not algebraically closed. Also show that it doesn't hold if m-Spec is replaced by Spec (even if k is algebraically closed).

Solution: We used the fact that k was algebraically closed, and so $R/\mathfrak{m} \cong k$ when we wrote $R/\mathfrak{m} \otimes_k S \cong S$ and also $(R/\mathfrak{m} \otimes_k S/\mathfrak{n}) \cong k$. Consider the $k = \mathbb{R}$ and $R \cong S \cong \mathbb{C}$. Then $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ has 2 prime ideals and not one, they are $\langle i \otimes 1 - 1 \otimes i \rangle$ and $\langle 1 \otimes i - i \otimes 1$.

For the second part, set R = k[x] and S = k[y]. Then it is easy to see that $R \otimes_k S \cong k[x, y]$. The prime ideal $Q = \langle x - y \rangle$ satisfies $\varphi Q = (\langle 0 \rangle, \langle 0 \rangle)$ which is the same as $\varphi(0)$.

3. Suppose that R is a ring and M_i are R-modules. Prove that each of the M_i is flat if and only if the direct sum $\bigoplus_i M_i$ is flat.

Hint: Recall that a module is flat if the functor $\cdot \mapsto \cdot \otimes_R M$ is an exact functor.

Solution: This follows immediately from the fact that tensor commutes with direct sum (which I will not check).

4. In class we sketched the proof of Hom-Tensor adjointness. In other words, that if R is a ring and L, M, N are R-modules, then

$$\operatorname{Hom}_R(L \otimes_R M, N) \cong \operatorname{Hom}_R(L, \operatorname{Hom}_R(M, N)).$$

In class, we only partially verified that there was a bijection of sets. Carefully write down a proof that they are isomorphic paying particular attention to verifying that these are isomorphic as *R*-modules. Additionally, prove that the isomorphism is functorial in the *L*-term (it's functorial in the other terms too, but let's just do one). This means that if $f: L_1 \to L_2$ is an *R*-module homomorphism, prove that there is a commutative diagram (in other words, it doesn't matter how you traverse it)

where the horizontal arrows are induced by f (I'll leave it to you exactly how to induce the maps).

Solution: I refuse to write down any such homological algebra carefully, as it is impossible to read. This is something that must be done quietly in alone in a preferably dark room. I will also not be grading this problem. However, if you are desperate, this is I'm sure done carefully in many algebra texts. Simply search for "Hom-Tensor adjointness".

5. Prove that $\operatorname{Hom}_R(\cdot, P)$ is left exact for any *R*-module *P* (in other words, if $0 \to Q' \xrightarrow{\alpha} Q \xrightarrow{\beta} Q'' \to 0$ is exact, then $0 \to \operatorname{Hom}_R(Q'', P) \xrightarrow{\beta^{\vee}} \operatorname{Hom}_R(Q, P) \xrightarrow{\alpha^{\vee}} \operatorname{Hom}_R(Q', P)$ is also exact).

Solution: Choose $\varphi \in \operatorname{Hom}_R(Q'', P)$ and suppose that the composition $Q \xrightarrow{\beta} Q'' \xrightarrow{\varphi} P$ is zero, but then since β is surjective, φ is also zero, this shows the exactness in the middle.

Certainly also if $\varphi : Q'' \to P$ induces $Q \xrightarrow{\beta} Q'' \xrightarrow{\varphi} P$ as above (ie, $\varphi \circ \beta \in \text{Image}(\beta^{\vee})$), then the composition $Q' \xrightarrow{\alpha} Q \xrightarrow{\beta} Q'' \to P$ is zero since $Q' \to Q \to Q''$ is already zero. Thus $\text{Image}(\beta^{\vee}) \subseteq \ker(\alpha^{\vee})$.

Suppose now that $\psi: Q \to P$ is such that $Q' \xrightarrow{\alpha} Q \xrightarrow{\psi} P$ is zero (in other words, $\psi \in \ker(\alpha^{\vee})$). Thus we have a factorization $Q \to Q/Q' \to P$ induced as in the first isomorphism theorem. But $Q/Q' \cong Q''$ and so $\psi \in \operatorname{Image}(\beta^{\vee})$ as well.

6. Show that if $Q' \xrightarrow{\alpha} Q \xrightarrow{\beta} Q''$ is a sequence of maps (not necessarily exact) and that $\operatorname{Hom}_R(Q'', P) \xrightarrow{\beta^{\vee}} \operatorname{Hom}_R(Q, P) \xrightarrow{\alpha^{\vee}} \operatorname{Hom}_R(Q', P)$ is exact for all *R*-modules *P*, then $Q' \to Q \to Q''$ is also exact. This is a very special case of something called Yoneda's lemma.

Solution: Indeed, first we need to show that $\beta \circ \alpha = 0$. Take P = Q'' and so we know that $\operatorname{Hom}_R(Q'', Q'') \xrightarrow{\beta^{\vee}} \operatorname{Hom}_R(Q, Q'') \xrightarrow{\alpha^{\vee}} \operatorname{Hom}_R(Q', Q'')$ is exact. This means in particular that $\alpha^{\vee}(\beta^{\vee}(\operatorname{id}_{Q''})) = 0$. But this just means that the composition

$$Q' \xrightarrow{\alpha} Q \xrightarrow{\beta} Q'' \xrightarrow{\operatorname{id}_{Q''}} Q''$$

is zero which clearly implies that $\beta \circ \alpha = 0$.

For the second part, we need to show that ker $\beta \subseteq \text{Image } \alpha$. This time take $P = Q/\text{Image}(Q') = Q/\alpha(Q')$ and consider $\phi \in \text{Hom}_R(Q, P) = \text{Hom}_R(Q, Q/\alpha(Q'))$ to be the natural surjection. Certainly the composition $\alpha^{\vee}(\phi)$ which is simply the composition

$$Q' \xrightarrow{\alpha} Q \xrightarrow{\phi} P$$

is zero by the above work. Thus $\phi = \beta^{\vee}(\psi)$ for some $\psi \in \operatorname{Hom}_R(Q'', P)$. In other words, the following composition

$$Q \xrightarrow{p} Q'' \xrightarrow{\psi} P$$

is ϕ . But then $\alpha Q' = \ker \phi \subseteq \ker \beta$ and the proof is complete.

7. Combine the previous three problems to prove the that $\otimes M$ is right exact for any *R*-module *M*.

HOMEWORK # 3

Hint: First fix $0 \to L' \to L \to L'' \to 0$ to be a short exact sequence. Use problem 6. to conclude that it is enough to show that $0 \to \operatorname{Hom}_R(L' \otimes M, N) \to \operatorname{Hom}_R(L \otimes M, N) \to \operatorname{Hom}_R(L' \otimes M, N)$ is exact. Now use problem 4. followed immediately by problem 5. to complete the proof.

Solution: Using the notation from the hint, we use problem 6 in the way described. However, by problem 4,

 $0 \to \operatorname{Hom}_R(L'' \otimes M, N) \to \operatorname{Hom}_R(L \otimes M, N) \to \operatorname{Hom}_R(L' \otimes M, N)$

is exact if and only if

 $0 \to \operatorname{Hom}_R(L'', \operatorname{Hom}_R(M, N)) \to \operatorname{Hom}_R(L, \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(L', \operatorname{Hom}_R(M, N))$

is exact. This latter is exact by problem 5. and the proof is completed.