HOMEWORK # 1 DUE FRIDAY SEPTEMBER 2ND

MATH 538 FALL 2011

1. Suppose that $\phi : R \to S$ is a ring homomorphism and I is an ideal of R. If \mathfrak{a} is an ideal of S, prove that $\phi^{-1}(\mathfrak{a})$ is an ideal of R. More generally, if \mathfrak{b} is an ideal of R and $\mathfrak{a} = \langle \phi(\mathfrak{b}) \rangle_S$ is the ideal of S generated by $\phi(\mathfrak{b})$, then observe that $\mathfrak{b} \subseteq \phi^{-1}(\mathfrak{a})$.

- (a) Give an example to show that it is possible that $\mathfrak{b} \neq \phi^{-1}(\mathfrak{a})$.
- (b) Suppose that the map $R \to S$ splits as a map of *R*-modules (in other words, there is an *R*-module map $\phi: S \to R$ that sends 1_S to 1_R). Prove that then $\mathfrak{b} = \phi^{-1}(\mathfrak{a})$.

2. Let A be a ring and $\mathfrak{n} = \sqrt{0}$ is its nilradical. Show that the following are equivalent:

- (i) A has exactly one prime ideal.
- (ii) Every element of A is either a unit or nilpotent.
- (iii) A/\mathfrak{n} is a field.

3. Suppose that R is a ring with nilradical $\mathfrak{n} = \sqrt{0}$. Suppose that $u \in R$ is a unit and $x \in \mathfrak{n}$ is nilpotent. Prove that u + x is also a unit in R. Similarly show that if $y \in R$ and $(y + \mathfrak{n})$ is a unit in R/\mathfrak{n} , then y is a unit in R.

4. Find an example of each of the following:

- (i) Prime ideals $P_1, P_2 \subseteq R$ such that $P_1 + P_2$ is both not prime and also not equal to R.
- (ii) A ring homomorphism $\phi: R \to S$ and a maximal ideal $\mathfrak{m} \in S$ such that $\phi^{-1}(\mathfrak{m})$ is not a maximal ideal of R.
- (iii) Ideals I and J in a ring such that $IJ \neq I \cap J$.

5. Suppose that P is an ideal in R. Prove that the following are equivalent.

- (i) P is prime.
- (ii) If we are given ideals $I, J \subseteq R$ such that $IJ \subseteq P$, then either $I \subseteq P$ or $J \subseteq P$.

Conclude that if $P \subseteq R$ is prime and we are given ideals $I, J \subseteq R$ such that $I \cap J \subseteq P$, then either $I \subseteq P$ or $J \subseteq P$.

6. Suppose that R is a commutative ring and $R^n \cong R^m$ (the two free modules are isomorphic). Prove that n = m (this is false for non-commutative rings).