NOTES ON A TRICKY PROBLEM FROM CLASS

KARL SCHWEDE

This problem was taken from an old University of Wisconsin exam.

1. Suppose G is a group, and $|G| = p^n m < \infty$ for some prime p which does not divide m. Suppose $P \in \text{Syl}_p(G)$ and $N \leq G$ is such that $|G:N| = |P| = p^n$.

(a) Prove that $N = \{x \in G \mid p \not| |x|\}.$

Solution: Certainly |N| is not divisible by p so that if $x \in N$ then $p \not| |x|$ hence \subseteq is obvious. Thus assume that $x \in G$ and that p does not divide |x|. But now let $\overline{x} = xN$ the coset of N in G/N. Note that if $x^k = 1$ then $\overline{x}^k = 1$ and hence $|\overline{x}| |x|$. In particular, $p \not| |\overline{x}|$. But $|G/N| = p^n$ and hence $\overline{x} = 1 \cdot N \in G/N$. But then $x \in N$ as desired.

(b) If every element $y \in G \setminus N$ has order p to a power, then show that $P = N_G(P)$.

Solution: If $P \neq N_G(P)$ then there exists a prime $q \mid |N_G(P)|, q \neq p$, note $q \mid m$. Thus fix $Q \in \text{Syl}_q(N_G(P)) \subseteq N_G(P) \subseteq G$. Now, note that no element of Q has p-power order and so $Q \subseteq N$. Consider the commutator

$$[Q, P] = \{x^{-1}y^{-1}xy \mid x \in Q, y \in P\}$$

which measures the extent to which elements of Q and P commute.

Claim 0.1. $[Q, P] \subseteq N$.

Proof of claim. Consider $x^{-1}y^{-1}xy \in [Q, P]$. Since $x \in Q \subseteq N$ we can write $x^{-1}y^{-1}xy = x^{-1}y' = x^{-1}x'$ for some $x' \in N$ and so $[Q, P] \subseteq N$. This proves the claim.

But we also assert that:

Claim 0.2. $[Q, P] \subseteq P$.

Proof of claim. Again take $x^{-1}y^{-1}xy \in [Q, P]$. Since $Q \subseteq N_G(P)$, Q normalizes P and so we can write $x^{-1}y^{-1}xy = y'x^{-1}xy = y'y$ for some $y' \in P$. This is in P and the claim is proven. \Box

Taking the two claims together we have shown that $[Q, P] \subseteq N \cap P$ but $N \cap P$ is a subgroup of N and P, groups of relatively prime order and so $[Q, P] = \{1\}$. Thus $x^{-1}y^{-1}xy = 1$ for all $x \in Q$ and $y \in P$ such shows that xy = yx and thus the elements of Q and P commute. But if $x \in Q$ and $y \in P$ are non-unit elements, then pq||xy| and so $xy \notin N$. But then xy has order p^a for some integer a since $xy \notin N$. This is impossible and we have found our contradiction.