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Theorem 0.1. Suppose R is a PID and M = R⊕m. Suppose that N ⊆ M is an R-submodule.
Then N ∼= R⊕n for some n ≤ m.

Proof. We follow the book to start. Set Σ = {φ(N) ⊆ R | φ ∈ HomR(M,R)} and let Iφ ⊆ R be a
maximal element of Σ with I = φ(N) for some fixed φ. We know Iφ = 〈aφ〉 where aφ = φ(y) for
some y ∈ N ⊆ M . Obviously if N 6= 0 then φ(N) 6= 0 for some φ ∈ HomR(M,R) (consider the
projections) and so since Iφ is maximal we may assume that Iφ 6= 0.

Claim 0.2. ψ(y) ∈ Iφ for every ψ ∈ HomR(M,R).

Proof of claim. Consider the ideal 〈ψ(y), φ(y)〉 = 〈ψ(y)〉 + Iφ = Jψ = 〈bψ〉. Obviously bψ =
rψ(y) + sφ(y) for some r, s ∈ R and so Jψ = 〈(rφ + sψ)(y)〉 ⊆ (rφ + sψ)(N). But Jψ contains Iφ
and so Jψ = Iφ by maximality. Hence ψ(y) ∈ Iφ as claimed. �

We return to the main proof. Our next goal is to construct an element y′ ∈ M such that y is a
multiple of y′ and such that φ(y′) = 1 ∈ R. Note that y′ will not be in N .

We let πi : M = R⊕m −→ R to be the projection onto the ith component. Then πi(y) ∈ Iφ = 〈aφ〉
for each i. Hence we can write πi(y) = biaφ for each i. Write y′ = b1e1 + . . .+ bmem where the ei
are the canonical basis elements in M = R⊕m. Now notice that

aφy
′ = aφb1e1 + . . .+ aφbmem = π1(y)e1 + . . .+ πm(y)em = y.

Also aφ = φ(y) = φ(aφy
′) = aφφ(y′) and so since R is an integral domain we see that φ(y′) = 1 as

claimed.

Lemma 0.3. If we have a map φ : M −→ R and an element y′ ∈ M such that φ(y′) = 1 then
M ∼= y′R⊕K where K = kerφ.

Proof of lemma. Consider the map ρ : y′R ⊕K −→ M which sends (y′r, k) 7→ y′r + k. If (y′r, k) ∈
ker ρ then y′r + k = 0 and so y′r ∈ K. But then φ(y′r) = r = 0. Hence (y′r, k) = (0, 0) and
ρ injects. On the other hand given any z ∈ M note that φ(φ(z)y′) = φ(z)φ(y′) = φ(z). Thus
z−φ(z)y′ ∈ kerφ. But now write z = φ(z)y′+ (z−φ(z)y′) ∈ Image(ρ). This shows that ρ surjects
as claimed. �

Using the lemma and noting that 〈aφ〉 = aφR ∼= R as R-modules. We also see that φ|N shows
us that

N ∼= 〈y〉 ⊕ ker(φ|N ) = 〈y〉 ⊕ (K ∩N).

From here on now we can proceed by induction on the rank of N . The base case when N is rank
0 is trivial since then N = 0 (since N is torsion free).

We construct φ as above and write M = 〈y′〉 ⊕K and N = 〈aφy′〉 ⊕ (K ∩N). Obviously K ∩N
has rank lower than N (since 〈aφy′〉 has rank 1). Thus by induction K ∩N is free. But then N is
a direct sum of free modules and so it is also free. �

Remark 0.4. As the book points out, by carefully stepping through the induction, one actually
observes that one can choose a basis y′1, . . . , y

′
m for M such that a1y

′
1, a2y

′
2, . . . , any

′
n is a basis for

N (for some ai ∈ R).
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