WORKSHEET #1 MATH 5310

DUE, MONDAY AUGUST 28TH (IN GRADESCOPE)

Only *ONE* worksheet should be submitted per group, of up to 4, in gradescope. When you submit it, you can list the other members of your group.

A law of composition or a binary operation on a set S is, formally, a function

 $S\times S \longrightarrow S$

Informally, it is just a way to combine two elements in a set (like adding vectors). We can denote this operation using any symbol we like, perhaps by no operation or by \odot .

Definition. A group is a set G with a law of composition/binary operation (perhaps denoted by \odot) which is:

- (1) associative,
- (2) has an identity e, or it might be called 1 or 0, $(e \odot a = a \odot e = a$ for every $a \in G$),
- (3) such that every element of G has an inverse (for each $a \in G$, there exists $b \in G$ such that $a \odot b = b \odot a = e$).

Below are sets with potential laws of composition / binary operations (ie, a way to combine elements). Determine if each set is (or is not) a group and prove your answer. If it is a group, is the operation commutative? 1

In each problem, to check whether something is a group, you need to show all of the following.

- (a) Is the operation a law of composition?
- (b) Is the operation associative?
- (c) Is there an identity?
- (d) Does every element have an inverse?

To show that something is not a group, you only need to show that one thing fails.

1. The numbers $\{0, 1, 2, ..., 11\}$. The binary operation is multiplication modulo² 12, denoted \cdot_{12} . For example, $5 \cdot_{12} 7 = 11$ since $5 \cdot 7 = 35$ and 35 has remainder 11 when dividing by 12.

 $^{^1\}mathrm{If}$ the operation is commutative, the group is called *Abelian*.

²Meaning divide by n and take the remainder

2. The set of real-valued 2×2 matrices with positive determinant. The operation is matrix multiplication.

Hint: det(AB) = det(A) det(B).

3. The set of real-valued 3×3 matrices with integer (whole number) determinant. The binary operation is matrix multiplication.

4. Fix a group G and an element $a \in G$. Consider the set $H = \{g \in G | ga = ag\}$. The binary operation on H is the binary operation from the group G.

5. The numbers $\{1, 2, 3, 4, 5\}$. The (potential) binary operation is multiplication modulo 6.

6. The set of bijective³ functions $f : \{A, 7, \odot\} \to \{A, 7, \odot\}$. The operation is function composition.

7. The set of functions $g : \{A, 7, \odot\} \to \mathbb{R}$. The operation is addition of functions. That is, g + g' is defined to be the function which sends $x \mapsto g(x) + g'(x)$, in other words (g + g')(x) = g(x) + g'(x).

 $^{^{3}\}mathrm{that}$ is, one-to-one and onto