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MATH 435 SPRING 2011

Consider the group U(n), the set of integers between 1 and n − 1 relatively prime to n, under
multiplication mod n.
1. Suppose that p and q are distinct primes. What is the order of U(pq), |U(pq)|?

Solution: There are pq − 1 potential elements {1, 2, . . . , pq − 1}. We exclude the elements
{p, 2p, . . . , (q− 1)p} (there are q− 1 of these) and the elements {q, 2q, . . . , (p− 1)q} (there are p− 1
of these). Note that these two excluded sets have nothing in common since anything in common is
divisible by both p and q. Thus we have in total

(pq − 1)− (q − 1)− (p− 1) = pq − q − p+ 1 = (p− 1)(q − 1)

elements. It’s not hard to see (p− 1)(q − 1) in other ways either, but this is quite direct.

2. If p and q are still distinct primes, show that the natural map Z mod pq → Z mod p × Z mod q is
bijective (here the map sends r to (r mod p, r mod q)). (This is basically the Chinese Remainder
Theorem)
Hint: To show it is bijective, it is enough to show it is surjective since the sets are the same size.
Fix (a, b) ∈ Z mod p×Z mod q. Write 1 = cp+dq for some integers c and d (we can do this because p
and q are relatively prime), now form r = (bcp+ adq mod pq). Compute (r mod p) and (r mod q).

Solution: We use the notation from the hint. Note (r mod p) = ((bcp+ adq mod pq) mod p) =
(adq mod p) (note modding out by pq followed by modding out by p is the same as modding out
by p since p divides pq). Now observe that (adq mod p) = (a(dq + cp) mod p) which itself equals
(a · 1 mod p) = (a mod p). Likewise

(r mod q) = (bcp mod q) = (b(cp+ dq) mod q) = (b · 1 mod q) = b mod q.

This proves that the function is surjective since r is sent to (a, b).

3. Suppose that p and q are distinct primes and that n1 and n2 are arbitrary integers such that
(n1 mod p) = (n2 mod p) and (n1 mod q) = (n2 mod q). Use the previous exercise to conclude
that (n1 mod pq) = (n2 mod pq).

Solution: This is easy, the function, say we call in φ, described above is bijective and in par-
ticular injective, so if φ(n1 mod pq) = φ(n2 mod pq), then (n1 mod p) = (n2 mod p) and also
(n1 mod q) = (n2 mod q), we immediately see that (n1 mod pq) = (n2 mod pq) as desired.
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Now we get to some cryptography. As before, fix p and q to be distinct primes and set n = pq,
m = (p − 1)(q − 1) (alternately, take m to be the lcm of (p − 1) and (q − 1)), and finally fix r to
be any integer relatively prime to m.

In RSA (Rivest, Shamir, Adleman) encryption, suppose there are two people, (A) and (B). (A)
knows p, q and r. He then publishes n and r. If person (B) wants to send (A) an encrypted message,
in the form of an integer M between 1 and n, person (B) merely computes:

N = M r mod n.

He can even make this public! Anyone who knows how to factor n (for example person (A)) can
decrypt this message as follows. Find the s such that 1 = rs mod m (in other words, find the
multiplicative inverse of r modulo m). We will show that

M = N s mod n.

The reason that this is secure, is that very large numbers are very hard to factor! In particular,
we don’t have a good way to factor n.

4. Fix the following numbers p = 5, q = 7, and r = 5. Encrypt the number 3 and then decrypt
what you got and verify that you get 3 back.
Hint: 35 mod 35 = (32 mod 35)(33 mod 35) mod 35. Similarly, you can find the inverse of
(r mod 24) by raising r to bigger and bigger powers.

Solution: First note that 34 mod 35 = 81 mod 35 = 11. Thus 35 mod 35 = (3 · 34 mod 35) =
(3·11 mod 35) = 33 = N . Now we compute the multiplicative inverse of (r mod 24). In this case it’s
really easy, (52 mod 24) = (25 mod 24) = 1 so s = 5 also (r is its own inverse). Ok, now we are in
business, we need to check the inverse, and so to compute 335 mod 35. Note that 33 = −2 mod 35
which will make computations much easier. Thus (−2)5 mod 35 = (−32) mod 35 = 3 mod 35 = M
as desired.

We need to prove that the algorithm works. In particular, we need to prove that

(N s mod pq) = (M rs mod pq) = (M mod pq) = M.

This is very similar to Fermat’s little theorem ((ap−1 mod p) = 1) and we will use it during the
proof.

5. Prove that (N s mod pq) = (M mod pq).
Hint: Write rs = 1 + tm for some integer t and compute M rs mod both p and q. Then use the
work from the first page. Solution: Simply observe that M rs = M1+tm = M1M tm. Now, write
tm = (p − 1)k, so that M tm mod p = (M (p−1))k = 1k = 1 by Fermat’s little theorem. Likewise
(M tm mod q) = 1. In particular, (M tm mod p) = (1 mod p) and (M tm mod q) = (1 mod q) so
that 1 = (M tm mod pq) by a previous exercise. But now,

(M rs mod pq) = (M1+tm mod pq) = (M mod pq)(M tm mod pq) mod pq = (M mod pq) = M

which completes the proof.


