
SOME SOLUTIONS TO HOMEWORK #3

MATH 435 – SPRING 2012

Certainly there are many correct ways to do each problem.

#28 on page 65. If G is a cyclic group of order n, show that there are ϕ(n) generators for
G. Give their form explicitly.

Proof. Suppose that G = 〈a〉. Then I claim that 〈ai〉 = G if and only if i is relatively prime to
n. This will indeed finish the problem, since there exactly ϕ(n) positive integers i < n with this
property.

Suppose first that i is relatively prime to n and also suppose that e = (ai)k = aik. It follows
immediately that n divides ik. But if i is relatively prime to n, we also have n dividing k. In
particular, the order of (ai) ≥ n. But the order of any element of G is ≤ n and so the order of
(ai) is exactly n.

Now suppose conversely that ai generates G. In particular, this means that the order of ai is
exactly n. But now suppose that k > 0 divides both i and n and we will obtain a contradiction.
Then (ai)n/k = (an)i/k = ei/k = e. In particular, the order of ai is less than n/k < n. This is a
contradiction. �

#1 on page 73. Determine in each of the parts if the given mapping is a homomorphism. If
so, identify the kernel and whether the mapping is one-to-one or onto..

(a) G = Z under +, G′ = Zmodn, φ(a) = [a] for a ∈ Z

Proof. This is a homomorphism since φ(a + b) = [a + b] = [a] + [b] = φ(a) + φ(b). The
kernel is nZ. It is onto but not one-to-one (note the kernel is not trivial). �

(b) G group, φ : G→ G defined by φ(a) = a−1 for a ∈ G.

Proof. This is not a homomorphism since φ(ab) = (ab)−1 = b−1a−1 = φ(b)φ(a) which
need not equal φ(a)φ(b) in general. �

(c) G Abelian group, φ : G→ G defined by φ(a) = a−1 for a ∈ G.

Proof. If G is Abelian it is a homomorphism, then the map from (b) is a homomorphism
and in fact it is both injective and surjective. �

(d) G group of non-zero real numbers under multiplication, G′ = [−1, 1], φ(r) = 1 if r is
positive and φ(r) = −1 if r is negative

Proof. This is a homomorphism. Indeed, we can also write φ(r) = r/|r|. Then φ(rs) =
(rs)/|rs| = (r/|r|)(s/|s|) = φ(r)φ(s). It is clearly not injective since φ(1) = φ(2). It is
not surjective since nothing is sent to 1

2 . �

(e) G an Abelian group, n > 1 a fixed integer and φ : G→ G defined by φ(a) = an

Proof. This is a homomorphism since φ(ab) = (ab)n = anbn = φ(a)φ(b) using the fact
that G is Abelian. However, if G = {e, a‖} is a cyclic group of order 2 and if n = 2, then
the φ map is neither injective or surjective. It might be sometimes though (in the same
example, if n = 3...) �
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#2 on page 73. Prove that for all groups G1, G2, G3:

(a) G1
∼= G1

Proof. The identity map G1 → G1 is clearly an isomorphism. �

(b) G1
∼= G2 implies that G2

∼= G1.

Proof. Given a bijective homomorphism φ : G1 → G2, we consider ψ = φ−1 : G2 → G1.
This is clearly a bijective function and we need to prove it is also a homomorphism.
Suppose that x, y ∈ G2, then we need to show that ψ(xy) = ψ(x)ψ(y). Consider then
φ(ψ(xy)) = xy = φ(ψ(x))φ(ψ(y)) = φ(ψ(x)ψ(y)). Since φ is injective, we see that
ψ(xy) = ψ(x)ψ(y) as desired. �

(c) G1
∼= G2, G2

∼= G3 implies that G1
∼= G2.

Proof. Fix φ : G1 → G2 a bijective homomorphism and ψ : G2 → G3 another bijective
homomorphism. We consider (ψ ◦ φ) : G1 → G3. This is certainly bijective since a
composition of bijective functions is bijective (see the first chapter of the book). Then
for a, b ∈ G1, we have

(ψ ◦ φ)(ab) = ψ(φ(ab)) = ψ(φ(a)φ(b)) = ψ(φ(a))ψ(φ(b)) = (ψ ◦ φ)(a)(ψ ◦ φ)(b).

This completes the proof. �

#12 on page 74. Prove that Z(G) is a normal subgroup of G.

Proof. Suppose that x ∈ G. Then xZ(G) = {xz|z ∈ Z(G)} = {zx|z ∈ Z(G)} = Z(G)x where
the middle equality comes from the fact that z ∈ Z(G) commute with everything in G. �

#14 on page 74. Suppose that φ : G → G′ is a surjective homomorphism with G Abelian.
Prove that G′ is also Abelian.

Proof. Suppose that a′, b′ ∈ G′. Since φ is surjective, there exist a, b ∈ G such that φ(a) = a′

and φ(b) = b′. Thus

a′b′ = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = b′a′.

Since a′ and b′ are arbitrary, this proves that G′ is Abelian. �

#23 on page 75. Let G be a group such that all subgroups are normal. If a, b ∈ G show that
ba = abj for some j ∈ Z.

Proof. Consider the cyclic subgroup H = 〈a〉. Since H is normal, we know that bH = Hb. Now,
ba ∈ bH = Hb = {ajb|j ∈ Z}. Thus ba = ajb for some j ∈ Z which completes the proof. �

#43 on page 75. Prove that a group of order 9 must be Abelian.

Proof. First suppose that G is a group of order 9 that is not Abelian. Since every cyclic group
is Abelian, it follows that G is also not cyclic. Thus the order of every non-identity element of
G is necessarily equal to 3.

I’ll give a proof that is different from the brute-force ad-hoc proofs which are certainly also
possible (in fact, what I do below proves that statement for any group of order p2 for a prime
p).

Define an equivalence relation as follows. x ∼ y if there exists a ∈ G such that axa−1 = y. It
is easy to verify that this is indeed an equivalence relation and so I will leave it to you.

Let us consider the various equivalence classes. Notice that e is in its own equivalence class,
[e] = {e}. Now, fix x ∈ G and consider the set Sx ⊆ G made up of the elements a such that
axa−1 = x. It is easy to see that Sx is a subgroup of G.

Claim 1. I claim that |[x]| = |G|/|Sx| which is equal to the number of cosets of Sx.
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Proof of claim. Consider the function ψ : G→ {bxb−1|b ∈ G} which sends a to axa−1. Note that
this map is surjective by construction. Suppose that aSx = bSx, then I claim that ψ(a) = ψ(b).
To see this, simply write b = as for some s ∈ Sx, then observe that ψ(b) = ψ(as) = (as)x(as)−1 =
a(sxs−1)a−1 = axa−1 = ψ(a). Conversely, if ψ(a) = ψ(b), then a similar argument implies that
aSx = bSx.

But what does this do for us. Well, ψ(a) = ψ(b) if and only if the cosets aSx and bSx are
equal. But this means that the elements of {bxb−1|b ∈ G} = [x] are in bijective correspondence
with the distinct cosets aSx of Sx. This is all that we claimed. �

We have now proved the claim. The reason we wanted this claim was because it proved that

The number of elements of each [x] divides the order of G.

Moving onto the rest of the problem, we notice that

G =
⋃

[x]

where the union runs over distinct equivalence classes of x. One of these equivalence classes is
size 1, the equivalence class of e. Note that G is Abelian if and only if every equivalence class
has size 1, so let’s suppose that this is not the case. But since the size of each [x] divides the
order of the group, we see that we can have two equivalence classes of size 3 and 3 equivalence
classes of size 1, or 1 equivalence class of size 3 and 6 equivalence classes of size 1.

The set of equivalence classes of size 1 exactly makes up the center Z(G) inside G. Thus
the second possibility is ruled out. Thus there must exist 2 equivalence classes of size 3 and
Z := Z(G) is the union of the remaining equivalence classes, each of which are of size 1. We
need to derive a contradiction in this case as well. Now, Z = Z(G) is a normal subgroup and so
since |Z| = 3, we have that G/Z is a group of size 3 as well. In particular, G/Z is cyclic since
3 is prime. Choose cZ such that 〈cZ〉 = G/Z. Then for any a, b ∈ G, we know that aZ = ciZ
and bZ = cjZ for some integers i, j. Thus a = ciz and b = cjz′ for some z, z′ ∈ Z. Then using
the fact that elements of Z commute with everything, we have

ab = (ciz)(cjz′) = (cicjzz′) = (z′ci+jz) = (z′cj)(ciz) = ba.

But this proves that G is Abelian, a contradiction. �


