
FIELDS AND POLYNOMIAL RINGS

MATH 435 SPRING 2012
NOTES FROM APRIL 6TH, 2012

1. Irreducible polynomials

Throughout this section, k denotes a field. Before really starting, I’d like to point out a couple
lemmas. The first ties together the notions of ideal containment and elements dividing each other.

Lemma 1.1. Given any elements f, g in an integral domain with unity R, we have that f |g if and
only if 〈g〉 ⊆ 〈f〉.

Proof. if f |g, then g = uf for some u ∈ R. But then rg = (ru)f ∈ 〈f〉 for any r ∈ R. Thus
〈g〉 ⊆ 〈f〉. Conversely, if 〈g〉 ⊆ 〈f〉 then g ∈ 〈f〉 and thus g = uf for some u ∈ R. Thus f |g as
desired. �

The next lemma explains when principal ideals are equal to the whole ring.

Lemma 1.2. Suppose that R is a commutative ring with unity and f ∈ R. Then 〈f〉 = R if and
only if f is invertible.

Proof. If 〈f〉 = R, then 1 ∈ 〈f〉 since 1 ∈ R. Thus there exists r ∈ R such that rf = 1, but this
implies that f is invertible.

Conversely, if f is invertible with inverse f−1, then 1 = f−1f ∈ 〈f〉. But then for any element
r ∈ R,

r = r · 1 ∈ 〈f〉
which implies that R = 〈f〉 as well. �

We begin with a definition of an irreducible element.

Definition 1.3. Suppose that f ∈ k[x] is a non-zero non-invertible element. Then we say that f
is irreducible if any of the following equivalent conditions hold (note that if one of them hold, then
all of them hold).

(1) For every element v ∈ k[x], either gcd(f, v) = 1 or f |v.
(2) If f |(ab) for some elements a, b ∈ k[x], then either f |a or f |b.
(3) If f = gh for some elements g, h ∈ k[x], then either g or h invertible.
(4) The ideal 〈f〉 is maximal.
(5) The quotient ring k[x]/〈f〉 is a field.

Proof that the definitions above are equivalent. Certainly conditions 4. and 5. are equivalent.
First we show that 1. ⇒ 2. Suppose then that f |(ab) and f does not divide a and f does not

divide b. We write ab = fu for some u ∈ k[x]. Since f does not divide a, we must have gcd(f, a) = 1.
Thus there exists s, t ∈ k[x] such that sf + ta = 1. Multiplying through by b, we get

sfb + tab = b

and so sfb + tfu = b. Factoring out an f , we get that f(sb + tu) = b and so f divides b, a
contradiction.
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Now we show that 2. ⇒ 3. Indeed, suppose now that f = gh. Then since f |(gh), we have that
f |g or f |h. In other words, either g = sf or h = tf for some s or t ∈ R. In the first case, we obtain

f = gh = (sf)h

which implies that 1 = sh which proves that h is invertible. In the second case, we obtain

f = gh = g(tf)

which implies that 1 = gt which proves that g is invertible. Thus either g or h is invertible, as
desired.

Next we show that 3.⇒ 1. which will prove the equivalence of 1., 2., and 3. Thus choose v ∈ k[x]
and suppose that 1 6= d = gcd(f, v) and that f does not divide v. But since d|f , we have that
f = du for some u ∈ k[x]. Thus either d or u is invertible. We will obtain a contradiction in either
case.

u is invertible: In this case, d = fu−1 and f |d. But note d|v and so f |v as well. But this is
a contradiction.

d is invertible: In this case, deg d = 0 and so d is a monic polynomial of degree 0, in other
words, d = 1, a contradiction.

Now we prove that 4. (or 5.) are equivalent to 1., 2. and 3. Suppose that 5. holds, thus 〈f〉
is in particular a prime ideal. We will show that 2. holds. Indeed, suppose that f |(ab) for some
a, b ∈ k[x]. Then ab ∈ 〈f〉 which implies that either a ∈ 〈f〉 or b ∈ 〈f〉, since 〈f〉 is a prime ideal by
assumption. In the first case, f |a and in the second, f |b. But this proves that f satisfies condition
2.

Finally, we assume that condition 3. holds but that 〈f〉 is not maximal. Thus there exists an
ideal J ⊆ k[x] such that

〈f〉 ( J ( k[x]

But since k[x] is a PID, J = 〈g〉 for some g ∈ k[x] and so f ∈ 〈g〉. Thus there exists h ∈ k[x] such
that f = gh. But then either g or h is invertible. Again we consider two cases:

g is invertible: In this case, J = k[x] which is impossible.
h is invertible: In this case, h−1f = g and so f |g and thus J = 〈g〉 ⊆ 〈f〉 which is also

impossible.

Since both possibilities lead to contradiction, we have completed the proof. �

Remark 1.4. The condition 2. above is usually described as f is prime whereas the condition in
1. is usually described as f is irreducible. As we have seen, in k[x] these conditions are equivalent,
but for a more general integral domain with unity, they are distinct. However, the proof 2. ⇒ 3.
always holds (we didn’t use any special properties of k[x]). In other words, every prime element is
irreducible.

2. Testing for irreducibility

In this section, develop some tests to discern whether a given element is irreducible.

Proposition 2.1. Suppose that k is a field and that f ∈ k[x], then f has a degree 1 factor (in
other words (bx− a)|f for some 0 6= b ∈ k and a ∈ k) if and only if f has a root in k.

Proof. Indeed, suppose first that (bx − a)|f for some nonzero b ∈ k and a ∈ k. By replacing a by
a/b, we may assume that b = 1 and thus that (x − a)|f . Thus f(x) = (x − a)g(x) which implies
that

f(a) = (a− a)g(a) = 0g(a) = 0

and thus f has a root in k.
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Conversely, suppose that f has a root a ∈ k. Consider then f(x) = (x− a)q(x) + r(x) for some
q(x), r(x) ∈ k[x] where deg r < deg(x− a) = 1. But then deg r = 0 (or r = 0 itself). Thus r(x) = r
is a constant. Plugging in a we get

0 = f(a) = (a− a)q(a) + r(a) = 0 + r = r

Thus r = r(x) = 0 and so (x− a)|f as desired. �

Here is an important corollary.

Corollary 2.2. A polynomial f(x) ∈ k[x] of degree 2 or 3 is irreducible if and only if f(a) 6= 0 for
every a ∈ k.

Proof. Certainly if f(a) = 0 then (x − a)|f(x) and so f is not irreducible since then f(x) =
(x− a)g(x) for some g(x) of degree 1 or 2 (in other words, g is not invertible).

Conversely, if f = gh where neither g or h is invertible, then by degree considerations, either g
or h is degree 1. Thus either g or h must be of the form bx− c for some 0 6= b, c ∈ k. Thus x− c

b
also divides f(x) and so f(c/b) = 0. This completes the proof. �
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