FIELDS AND POLYNOMIAL RINGS

MATH 435 SPRING 2012 NOTES FROM APRIL 6TH, 2012

1. Irreducible polynomials

Throughout this section, k denotes a field. Before really starting, I'd like to point out a couple lemmas. The first ties together the notions of ideal containment and elements dividing each other.

Lemma 1.1. Given any elements f, g in an integral domain with unity R, we have that f|g if and only if $\langle g \rangle \subseteq \langle f \rangle$.

Proof. if f|g, then g = uf for some $u \in R$. But then $rg = (ru)f \in \langle f \rangle$ for any $r \in R$. Thus $\langle g \rangle \subseteq \langle f \rangle$. Conversely, if $\langle g \rangle \subseteq \langle f \rangle$ then $g \in \langle f \rangle$ and thus g = uf for some $u \in R$. Thus f|g as desired.

The next lemma explains when principal ideals are equal to the whole ring.

Lemma 1.2. Suppose that R is a commutative ring with unity and $f \in R$. Then $\langle f \rangle = R$ if and only if f is invertible.

Proof. If $\langle f \rangle = R$, then $1 \in \langle f \rangle$ since $1 \in R$. Thus there exists $r \in R$ such that rf = 1, but this implies that f is invertible.

Conversely, if f is invertible with inverse f^{-1} , then $1 = f - 1f \in \langle f \rangle$. But then for any element $r \in R$,

$$r = r \cdot 1 \in \langle f \rangle$$

which implies that $R = \langle f \rangle$ as well.

We begin with a definition of an irreducible element.

Definition 1.3. Suppose that $f \in k[x]$ is a non-zero non-invertible element. Then we say that f is *irreducible* if any of the following equivalent conditions hold (note that if one of them hold, then all of them hold).

- (1) For every element $v \in k[x]$, either gcd(f, v) = 1 or f|v.
- (2) If f|(ab) for some elements $a, b \in k[x]$, then either f|a or f|b.
- (3) If f = gh for some elements $g, h \in k[x]$, then either g or h invertible.
- (4) The ideal $\langle f \rangle$ is maximal.
- (5) The quotient ring $k[x]/\langle f \rangle$ is a field.

Proof that the definitions above are equivalent. Certainly conditions 4. and 5. are equivalent.

First we show that $1. \Rightarrow 2$. Suppose then that f|(ab) and f does not divide a and f does not divide a. We write ab = fu for some $u \in k[x]$. Since f does not divide a, we must have gcd(f, a) = 1. Thus there exists $s, t \in k[x]$ such that sf + ta = 1. Multiplying through by b, we get

$$sfb + tab = b$$

and so sfb + tfu = b. Factoring out an f, we get that f(sb + tu) = b and so f divides b, a contradiction.

Now we show that $2. \Rightarrow 3$. Indeed, suppose now that f = gh. Then since f|(gh), we have that f|g or f|h. In other words, either g = sf or h = tf for some s or $t \in R$. In the first case, we obtain

$$f = gh = (sf)h$$

which implies that 1 = sh which proves that h is invertible. In the second case, we obtain

$$f = gh = g(tf)$$

which implies that 1 = gt which proves that g is invertible. Thus either g or h is invertible, as desired.

Next we show that $3. \Rightarrow 1$. which will prove the equivalence of 1., 2., and 3. Thus choose $v \in k[x]$ and suppose that $1 \neq d = \gcd(f, v)$ and that f does not divide v. But since d|f, we have that f = du for some $u \in k[x]$. Thus either d or u is invertible. We will obtain a contradiction in either case.

- u is invertible: In this case, $d = fu^{-1}$ and f|d. But note d|v and so f|v as well. But this is a contradiction.
- d is invertible: In this case, $\deg d = 0$ and so d is a monic polynomial of degree 0, in other words, d = 1, a contradiction.

Now we prove that 4. (or 5.) are equivalent to 1., 2. and 3. Suppose that 5. holds, thus $\langle f \rangle$ is in particular a prime ideal. We will show that 2. holds. Indeed, suppose that f|(ab) for some $a,b \in k[x]$. Then $ab \in \langle f \rangle$ which implies that either $a \in \langle f \rangle$ or $b \in \langle f \rangle$, since $\langle f \rangle$ is a prime ideal by assumption. In the first case, f|a and in the second, f|b. But this proves that f satisfies condition 2.

Finally, we assume that condition 3. holds but that $\langle f \rangle$ is not maximal. Thus there exists an ideal $J \subseteq k[x]$ such that

$$\langle f \rangle \subsetneq J \subsetneq k[x]$$

But since k[x] is a PID, $J = \langle g \rangle$ for some $g \in k[x]$ and so $f \in \langle g \rangle$. Thus there exists $h \in k[x]$ such that f = gh. But then either g or h is invertible. Again we consider two cases:

- g is invertible: In this case, J = k[x] which is impossible.
- h is invertible: In this case, $h^{-1}f = g$ and so f|g and thus $J = \langle g \rangle \subseteq \langle f \rangle$ which is also impossible.

Since both possibilities lead to contradiction, we have completed the proof.

Remark 1.4. The condition 2. above is usually described as f is prime whereas the condition in 1. is usually described as f is irreducible. As we have seen, in k[x] these conditions are equivalent, but for a more general integral domain with unity, they are distinct. However, the proof $2 \to 3$ always holds (we didn't use any special properties of k[x]). In other words, every prime element is irreducible.

2. Testing for irreducibility

In this section, develop some tests to discern whether a given element is irreducible.

Proposition 2.1. Suppose that k is a field and that $f \in k[x]$, then f has a degree 1 factor (in other words (bx - a)|f for some $0 \neq b \in k$ and $a \in k$) if and only if f has a root in k.

Proof. Indeed, suppose first that (bx - a)|f for some nonzero $b \in k$ and $a \in k$. By replacing a by a/b, we may assume that b = 1 and thus that (x - a)|f. Thus f(x) = (x - a)g(x) which implies that

$$f(a) = (a-a)g(a) = 0g(a) = 0$$

and thus f has a root in k.

Conversely, suppose that f has a root $a \in k$. Consider then f(x) = (x - a)q(x) + r(x) for some $q(x), r(x) \in k[x]$ where $\deg r < \deg(x - a) = 1$. But then $\deg r = 0$ (or r = 0 itself). Thus r(x) = r is a constant. Plugging in a we get

$$0 = f(a) = (a - a)q(a) + r(a) = 0 + r = r$$

Thus r = r(x) = 0 and so (x - a)|f as desired.

Here is an important corollary.

Corollary 2.2. A polynomial $f(x) \in k[x]$ of degree 2 or 3 is irreducible if and only if $f(a) \neq 0$ for every $a \in k$.

Proof. Certainly if f(a) = 0 then (x - a)|f(x) and so f is not irreducible since then f(x) = (x - a)g(x) for some g(x) of degree 1 or 2 (in other words, g is not invertible).

Conversely, if f = gh where neither g or h is invertible, then by degree considerations, either g or h is degree 1. Thus either g or h must be of the form bx - c for some $0 \neq b, c \in k$. Thus $x - \frac{c}{b}$ also divides f(x) and so f(c/b) = 0. This completes the proof.