
WORKSHEET # 7

MATH 435 SPRING 2011

In this worksheet, we’ll learn about factoring elements in abstract rings. For this worksheet, we
follow Rotman’s definition of a ring. In particular, all rings are commutative, associative, and have
a multiplicative identity.

Definition 0.1. Given two elements x, y in a ring R, we say that x divides y if there exists an
element r ∈ R such that rx = y. In this case we write x|y just like with numbers.

1. Show that x|y if and only if y ∈ (x) (recall that (x) is the ideal generated by x). This should be
very easy.

Solution: x|y occurs if and only if y = rx for some r ∈ R. Now y ∈ (x) means y = rx for some
r ∈ R. They mean the same thing!

Definition 0.2. Fix R to be an integral domain. We say that a non-zero element x ∈ R is
irreducible, if whenever we write x = ab for some a, b ∈ R, then either a or b is a unit.

We say that a non-zero non-unit element x ∈ R is prime, if whenever x|(ab) then either x|a or
x|b.

2. Identify the units and prime elements in Z. Fix k to be a field. Identify the units and
prime elements in the polynomial ring k[x]. However, we will see on the next page that not every
irreducible element in a ring is prime! WARNING prime factorization does not hold in all rings (it
is fine for polynomials and integers though).

Solution: The units of Z are simply −1 and 1. The prime elements are just the prime numbers
and their additive inverses.

In k[x], the units are just the non-zero elements of k (ie, degree 0 polynomials). The prime
elements are exactly those polynomials that cannot be factored. As I gave the definition, the units
are technically also prime, but by convention, we assume that units are not prime!

3. Show that an element x ∈ R, R is an integral domain, is prime if and only if (x) is a prime
ideal, which as we saw was equivalent to R/(x) being an integral domain.

Also show that if x is prime, then x is irreducible.
Hint: Suppose that x = ab and x is prime. Now, x divides itself, so x|(ab), use the definition now.

Solution: As in the hint, suppose x = ab, so that x|(ab). Thus since x is prime, either x|a or
x|b. If x|a, then a = xr for some r ∈ R. Thus x = ab = (xr)b. Therefore 1 = rb by cancelation
(we are in an integral domain) so that b is a unit. Likewise, if x|b, then b = xs for some s ∈ R.
Thus x = ab = a(xs) and so 1 = as again by cancelation (and the fact that integral domains are
commutative) and so a is a unit. Therefore, either a or b is a unit, as desired.
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4. Fix k to be a field and consider the ring

R = k[x, y, z]/(x2 − yz).

Show that the element (coset) x+ (x2− yz) is not prime. Then convince yourself that the element
x + (x2 − yz) is irreducible.
Hint: The second part can be tricky to actually prove (thus I say convince yourself). If you
get stuck on it for 5 minutes, move on. If it helps though, feel free to assume you have unique
factorization, and that every irreducible element is prime in k[x, y, z].

Solution: For the non-primality, we check that x+(x2−yz) divides
(
y + (x2 − yz)

) (
z + (x2 − yz)

)
but doesn’t divide either of the individual entries. The irreducibility is more involved and I won’t
write down the proof right now, I’m still working on giving a not-too-long proof.

5. Suppose that that R is a principal ideal domain. Show that every irreducible element is prime.
Hint: Suppose that x is irreducible and x|(ab) but x 6 |a. Consider the ideal (x, a). Now use the
fact that R is a principal ideal domain.

Solution: Following the hint, we suppose that x is irreducible, x|(ab) but x 6 |a. Because R is
a principal ideal domain, we have (x, a) = (g) for some g ∈ R. Thus g|x or in other words, gr = x
for some r ∈ R. But by the irreducibility of R, we have that either g is a unit or r is a unit. If r
is a unit, then (g) = (x) and so a ∈ (g) = (x) which implies that x|a. Therefore g is a unit and
(x, a) = R. In particular 1 = sx + ta for some s, t ∈ R. It follows that b = bsx + bat. x divides bsx
(obviously) and divides bat as well. This completes the proof.

6. Prove that the ring k[[x]] is a PID. This is hard(ish).

Solution: One first should show that an element in f ∈ k[[x]] is a unit if and only if it has
non-zero constant term. I’ll leave this as an exercise still. I claim the ideals of k[[x]] are simply
the ideals (xn) for n ≥ 0, or (0). This has a remarkable consequence though. For any power series
f = anx

n + an+1x
n+1 + . . . , there is a unit u ∈ k[[x]] such that uf = xn (again, I’ll leave to you to

verify).
Now, for each ideal I 6= 0, consider the smallest n such that I has a powerseries f whose first

term is of degree n. I claim that I = (xn) for that same n. Certainly (xn) = (f) ⊆ I. But for every
element g ∈ I, whose first term is of degree mg, we have g ∈ (xmg). By assumption n ≤ mg and so
g ∈ (xn) as well. Thus I ⊆ (xn) which completes the proof.


