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Recall that we say that a group G acts on a set X if the following two properties are satisfied.
(i) e.x = x for all x ∈ X.
(ii) a.(b.x) = (ab).x for all a, b ∈ G and all x ∈ X. (Notice that the multiplication ab is

multiplication in G, while the “.” multiplication is the group action).
Now fix x ∈ X. We recall that the orbit of x, denoted orbG(x), is the set {y ∈ X|∃g ∈
G such that g.x = y}. We recall that the stabilizer of x, denoted stabG(x) is the set {g ∈ G|g.x =
x}, it is always a subgroup.

We also recall some quick facts about group actions so suppose G acts on X.
(1) X is the disjoint union of its distinct orbits.
(2) |orbG(x)| = [G : stabG(x)] (the size of an orbit is the same as the number cosets of the

stabilizer).
(3) If G is finite, then (2) reduces to |orbG(x)| · |stabG(x)| = |G|.

1. Let G be a group and H be a subgroup. Set X to be the set of LEFT cosets of H (notice that
X is not necessarily a group because H is not normal). Prove that G acts on X with the following
action.

g.(aH) = (ga)H.

Solution: First we show that the action is well defined so suppose that cH = c′H. Then
g.(cH) = (gc)H = g(cH) = g(c′H) = (gc′)H = g.(c′H). Now we prove that the two properties
of an action, (i) and (ii) above hold. For (i), simply notice that e.(cH) = (ec)H = cH. For (ii)
observe that a.(b.(cH)) = a.((bc)H) = (a(bc))H = ((ab)c)H = (ab).(cH) as desired.

2. With the notation as in 1., consider G = S3 and H = 〈(12)〉. Compute the orbits and
stabilizers of all the elements of X.

Solution: First we write down X, the left cosets of H. Note

X = {{e, (12)}, {(13), (123)}, {(23), (132)}} .
We first compute the orbit of {e, (12)}. Notice that e.{e, (12)} = {e, (12)}, (13).{e, (12)} =
{(13), (123)} and (23).{e, (12)} = {(23), (132)}. Thus orbS3({e, (12)}) = X. Since the orbits
are disjoint, this is the only orbit.

Now we compute the stabilizer of each element.
stabS3({e, (12)}) = {e, (12)}
stabS3({e, (13)}) = {e, (23)}
stabS3({e, (23)}) = {e, (13)}
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3. Fix the notation as in 1., and fix g ∈ G. We define the function τg : X → X by the rule.

τg(aH) = (ga)H

Prove that τg really is a permutation (ie, prove it is bijective).

Solution: Consider the function τg−1 . I claim that τg ◦ τg−1 = idX = τg−1 ◦ τg.
First notice that for any aH ∈ X, τg ◦ τg−1(aH) = τg((g−1a)H) = (g(g−1a))H = aH. Likewise

τg−1 ◦ τg(aH) = τg−1((ga)H) = (g−1(ga))H = aH. This proves τg has an inverse function and thus
τg is a permutation.

4. Fix the notation as in 1.. Recall that SX is the set of permutations on X prove that φ : G→ SX

defined by the rule φ(g) = τg is group homomorphism. Also prove that the kernel of φ is contained
within H.

Solution: First notice that τgg′(aH) = ((gg′)aH) = (g(g′a))H = τg((g′a)H) = τg ◦τg′(aH). Since
aH was arbitrary, this proves that τgg′ = τg ◦ τg′ . Therefore φ(gg′) = τgg′ = τg ◦ τg′ = φ(g) ◦ φ(g′)
which proves that φ is a homomorphism.

Suppose now that g ∈ kerφ. Thus φ(g) = τg is the identity. In other words, τg(aH) = aH for all
aH ∈ X. In particular, τg(eH) = gH = H. Therefore g ∈ H and so kerφ ⊆ H as desired.


