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Recall that we say that a group G acts on a set X if the following two properties are satisfied.
(i) ex = x for all z € X.
(ii) a.(b.xz) = (ab).z for all a,b € G and all = € X. (Notice that the multiplication ab is
multiplication in G, while the “.” multiplication is the group action).
Now fix z € X. We recall that the orbit of z, denoted orbg(x), is the set {y € X|3g €
G such that g.xz = y}. We recall that the stabilizer of x, denoted stabg(z) is the set {g € G|g.x =
x}, it is always a subgroup.
We also recall some quick facts about group actions so suppose G acts on X.
(1) X is the disjoint union of its distinct orbits.
(2) |orbg(z)| = [G : stabg(x)] (the size of an orbit is the same as the number cosets of the
stabilizer).
(3) If G is finite, then (2) reduces to |orbg(z)| - [stabg(x)| = |G].
1. Let G be a group and H be a subgroup. Set X to be the set of LEFT cosets of H (notice that
X is not necessarily a group because H is not normal). Prove that G acts on X with the following

action.

g.(aH) = (ga)H.
Solution: First we show that the action is well defined so suppose that cH = ¢H. Then
g.(cH) = (9c)H = g(cH) = g({H) = (9¢)H = g.(¢ H). Now we prove that the two properties
of an action, (i) and (ii) above hold. For (i), simply notice that e.(cH) = (ec)H = ¢H. For (ii)
observe that a.(b.(cH)) = a.((bc)H) = (a(bc))H = ((ab)c)H = (ab).(cH) as desired.

2. With the notation as in 1., consider G = S3 and H = ((12)). Compute the orbits and
stabilizers of all the elements of X.

Solution: First we write down X, the left cosets of H. Note

X = {{67 (12)}7 {(13)7 (123)}7 {(23)7 (132)}} :

We first compute the orbit of {e,(12)}. Notice that e.{e, (12)} = {e, (1
{(13),(123)} and (23).{e, (12)} = {(23),(132)}. Thus orbg,({e, (12)}) =
are disjoint, this is the only orbit.

Now we compute the stabilizer of each element.

stabs; ({e, (12)}) = {e, (12)}
stabs; ({e, (13)}) = {e, (23)}
stabs; ({e, (23)}) = {e, (13)}

2)}, (13).{e,(12)} =
X. Since the orbits



WORKSHEET # 5 2

3. Fix the notation as in 1., and fix g € G. We define the function 7, : X — X by the rule.
Tg(aH) = (ga)H

Prove that 7, really is a permutation (ie, prove it is bijective).

Solution: Consider the function Tg—1. I claim that 7,0 Tg-1 = idy = Tg—10Tg.

First notice that for any ol € X, 7y 0 7,-1(aH) = 74((g"'a)H) = (9(g 'a))H = aH. Likewise
Ty-107g(aH) = 7,-1((9a)H) = (9~ '(ga))H = aH. This proves 74 has an inverse function and thus
Ty 1s a permutation.

4. Fix the notation as in 1.. Recall that Sx is the set of permutations on X prove that ¢ : G — Sx
defined by the rule ¢(g) = 74 is group homomorphism. Also prove that the kernel of ¢ is contained
within H.

Solution: First notice that 7,y (aH) = ((9¢")aH) = (9(¢'a))H = 174((¢'a)H) = 1407y (aH). Since
aH was arbitrary, this proves that 7., = 7, 0 7. Therefore ¢(gg’) = 1749 = 740 79 = ¢(g) © #(¢')
which proves that ¢ is a homomorphism.

Suppose now that g € ker¢. Thus ¢(g) = 74 is the identity. In other words, 74(aH) = aH for all
aH € X. In particular, 74(eH) = gH = H. Therefore g € H and so ker¢ C H as desired.



