QUIZ # 3

MATH 435 SPRING 2011

1. Suppose that R is a ring. Prove that 0x = 0 for all $x \in R$. (1 point)

Solution: We know 0 + 0 = 0 thus 0x = (0 + 0)x = 0x + 0x and now because we have an Abelian group under addition, we can cancel and so 0 = 0x as desired.

2. Suppose that R is an integral domain. Further suppose that $x^2 = y^2$ for some elements $x, y \in R$. Prove that either x = y or x = -y. (1 point)

Solution: Rewriting our equation we have $x^2 - y^2 = 0$. So $x^2 + xy - xy - y^2 = 0$ so (x+y)(x-y) = 0. But because R is an integral domain, either x + y = 0 or x - y = 0. In the first case, x = -y. In the second case x = y.

3. Suppose that R is a commutative associative ring with identity. Suppose that $x \in R$ and that $a, b \in R$ are two elements such that ax = 1 and bx = 1. Prove that a = b.

Solution: Take the first equation ax = 1 and multiply through by b. We get (ax)b = 1b = b. By the associativity property, (ax)b = a(xb). By the commutativity property a(xb) = a(bx) and now by assumption, we get a(bx) = a1 = a. Thus a = (ax)b = b as desired.

4. Give an example of a ring that is not an integral domain.

Solution: $\mathbb{Z}_{\mod 4}$ since in that ring $(2)(2) \equiv 0 \mod 4$ but $2 \neq 0$.