
HOMEWORK # 9

DUE WEDNESDAY MARCH 30TH

MATH 435 SPRING 2011

In this homework assignment, all rings with be commutative associative with unity (multiplicative identity).
Ring homomorphisms will always be assumed to send 1 to 1. The terms that appear on this homework assignment
WILL appear on the exam.
1. An ideal I is called radical if for every x ∈ R such that xn ∈ I (for some n), then x ∈ I also. Prove that I is
radical if and only if R/I has no nonzero nilpotent elements.

Solution: First suppose that I is radical and that x+I ∈ R/I is a nilpotent element. Then xn+I = (x+I)n =
0R/I = 0 + I ∈ R/I. Thus xn + I = 0 + I and so xn ∈ I. But then since I is radical, x ∈ I, so that x+ I = 0 + I.
Therefore, the only nilpotent element of R/I is the zero element (of R/I).

Conversely, suppose that I is not radical. Thus there exists x ∈ R, such that x /∈ I but xn ∈ I for some positive
integer n. Thus x+ I 6= 0 + I but xn + I = 0 + I. However, (x+ I)n = xn + I = 0 + I = 0R/I proving that x+ I
is a non-zero nilpotent element.

2. Suppose that x ∈ R is a nilpotent element. Prove that 1 + x is a unit.

Solution: Suppose xn = 0 for some integer n > 0. Then

(1 + x)(1− x+ x2 − x3 + x4 − · · ·+ (−1)n−1xn−1) = 1 + (−1)n−1xn = 1.

This proves that 1 + x is a unit.

3. Suppose that I and J are ideals of a ring. We define IJ = {x ∈ R|x is equal to a finite sum of ij for some i ∈
I, j ∈ J}. Show that both IJ and I ∩ J are ideals of R. Further show that IJ ⊆ I ∩ J .

Solution: Suppose we have x = i1j1 + · · ·+ injn ∈ IJ and x′ = i′1j
′
1 + · · ·+ i′nj

′
n. Then x+ x′ = i1j1 + · · ·+

injn + i′1j
′
1 + · · · + i′nj

′
n ∈ IJ . Likewise if r ∈ R, then rx = ri1j1 + · · · + rinjn = (ri1)j1 + · · · + (rin)jn ∈ IJ

since I is an ideal (and so rI ⊆ I). These two properties prove that IJ is an ideal. Furthermore, each term of
x = i1j1 + · · ·+ injn is an element of I (they are all multiples of elements of i). Likewise each term is in J . Thus
x ∈ I and x ∈ J (since ideals are closed under addition). In conclusion, x ∈ I ∩ J , and so IJ ⊆ I ∩ J as desired.

4. A ring R is called a principal ideal domain if it is an integral domain and every ideal I ⊆ R is principal, in other
words I = (r) for some R in R. Show that Z[i] is a principal ideal domain.

Solution: See Theorem 3.59 in Rotman.

5. Consider the ring R of continuous functions φ : R→ R. Prove that the subset I = {f ∈ R|f(1) = 0} is an ideal
but that A = {f ∈ R|f(1) ∈ Z} is not an ideal.

Solution: Suppose g ∈ R and f ∈ I. Then (gf)(1) = g(1)f(1) = g(1)0 = 0 so that gf ∈ I as well. Suppose
f1, f2 ∈ I, then (f1 + f2)(1) = f1(1) + f2(2) = 0 + 0 = 0. Thus I is an ideal.

Now for the second part, consider the function g ∈ R which is the constant function g(x) = 1/2. Consider the
constant function f ∈ A defined by f(x) = 1. Then (gf)(1) = g(1)f(1) = (1/2)(1) = (1/2) /∈ Z.

6. Suppose that A is an integral domain of positive characteristic. Suppose that I ( A is an ideal. Prove that A/I
has the same characteristic as A. However, give an example which demonstrates that A/I need not be an integral
domain.

Solution: Since A is an integral domain, A has prime characteristic p > 0. Since I is not equal to A, 1+I ∈ A/I
is not the zero element (in other words, 1+I 6= 0+I). We know p1 = 0 ∈ A. Therefore also p(1+I) = p1+I = 0+I
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in A/I. Thus the characteristic of A/I is less than or equal to the characteristic of A. Suppose it is strictly less
than. We consider the cyclic group generated by 1 + I as a subgroup (under addition) of A/I. We know that the
order of 1 + I divides p by Lagrange’s theorem. The order of 1 + I, under addition, is also not equal to 1 since
1 + I 6= 0 + I. Thus since p is prime, the order of 1 + I is equal to p. But the order of 1 + I is the same as the
characteristic of A/I. This completes the proof.

7. Suppose that F is a field with finitely many elements but not with only 2 elements (ie, not isomorphic to
Z mod 2). Prove that the sum of all the elements in the field is equal to zero.

Solution: In an earlier version of the homework, I didn’t rule out Z mod 2. Obviously that won’t work.
Consider now h =

∑
x∈F x =

∑
0 6=x∈F x. Choose an element x ∈ F which is not zero and not equal to 1 (we are

using the fact that Z mod 2 6= F ). Now, the elements F \ {0} form a group under multiplication, so multiplication
by x permutes the elements of F \ {0}. Therefore, xh = h. In particular, because h is a field and thus an integral
domain, h(x− 1) = 0. Since x is not 1, we must have that h = 0 as desired.

8. Find the characteristic of Z[i]/(2 + i).

Solution: The characteristic to Z[i]/(2 + i) is 5. To see this, we first have to prove that 1 + (2 + i) is not equal
to zero. In other words, suppose that there exists a + bi ∈ Z[i] such that 1 = (a + bi)(2 + i), in other words that
(a+bi) = 1/(2+i) ∈ Z[i]. However, 1/(2+i) = (2−i)/ ((2− i)(2 + i)) = (2−i)/5 = 2/5−i/5. But this is clearly not
in Z[i]. Thus 1+(2+i) 6= 0+(2+i). On the other hand 5(1+(2+i)) = 5+(2+i) = (2+i)(2−i)+(2+i) = 0+(2+i).
Therefore the characteristic of Z[i]/(2 + i) is less than or equal to 5, and furthermore, by the argument of 6., we
see that the characteristic divides 5. But since 1 + (2 + i) 6= 0 + (2 + i), the characteristic is > 1, and so the
characteristic is indeed 5.

9. Give an example of a prime ideal which is not maximal. An ideal I ⊆ R is called maximal if there are no proper
ideals J such that I ( J ( R.

Solution: The ideal (0) in Z is not maximal (the ideal (2) contains it), but it is prime (note that a ring is an
integral domain if and only if the zero ideal (0) is prime).

10. Show that the ideal (2 +
√

2) ⊆ Z[
√

2] is not prime.

Solution: As stated, this problem is false. In fact (2 +
√

(2)) is prime! I think I intended to ask that either

2 + 2
√

2 is not prime, or that 2 is not prime.
In the former, we can factor 2 + 2

√
2 = 2(1 +

√
2) = (2 +

√
2)(2−

√
2)(1 +

√
(2)). One would then have to show

that two of those elements are not a unit (notice that 1/(1 +
√

2) = (1 −
√

2)/(12 − 2) = −1 +
√

2 so 1 +
√

2 is a

unit). On the other hand 2 +
√

2 is not a unit since 1
2+
√
2

= 2−
√
2

2 = 1 − 1
2

√
2 /∈ Z[

√
2]. Likewise 2 −

√
2 is not a

unit since 1
2−
√
2

= 2+
√
2

2 = 1 + 1
2

√
2 /∈ Z[

√
2]. Thus (2 +

√
2) is not irreducible and thus also not prime.

In fact, the argument above also shows that 2 is not irreducible, and therefore also not prime, showing the latter
condition.

11. Suppose that S is a ring. Show that there is a unique ring homomorphism φ : Z → S which sends 1 to 1. In
particular, conclude that there is only one ring homomorphism Q→ Q which sends 1 to 1.

Solution: Suppose φ(1) = 1. Then φ(n) = φ(
∑n
i=1 1) =

∑n
i=1 φ(1) = nφ(1) = n. In particular, φ is forced to

be the identity homomorphism. Of course, the identity homomorphism exists, so we have shown that there exists
a unique homomorphism with the desired property.

Conversely, now consider a ring homomorphism φ : Q → Q which sends 1 to 1. By the above work, it must
also send n to n. Now n = φ(n) = φ(nm/m) = φ(m)φ(n/m) = mφ(n/m). Thus solving for φ(n/m) yields
φ(n/m) = n/m. Thus the only such homomorphism is again the identity homomorphism.

12. Fix a field k and consider the subring R = k[x2, x3] ⊆ k[x] (the former ring is all polynomials with zero
coefficient in front of x). Prove that k[x2, x3] is not a principal ideal domain.

Solution: We will show that the ideal (x2, x3) is not principal. Suppose it were principal, then (x2, x3) = (f)
for some f ∈ k[x2, x3]. Now, x2, x3 ∈ (f) so f |x2 and f |x3. Of course, all the elements involved are in k[x]. Then
since f |x2 there are three possibilities, f = λ for some non-zero λ ∈ k, or f = λx, or f = λx2. The first case is
impossible since then (f) = R, but (x2, x3)R 6= R since even (x2, x3)k[x] = (x2) does not contain 1. The second
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case is impossible since then f 6 R. This leaves only the final case. Thus f = λx2. But f |x3, so λx2|x3. In other
words, there exists r ∈ R such that rλx2 = x3. Again, all these elements live in k[x] which forces r = 1

λx. But

again, this is impossible since r = 1
λx /∈ R. Thus all possibilities lead to a contradiction and so our assumption

that (x2, x3) is principal must be false.

13. Suppose that φ : R → S is a surjective ring homomorphism. Prove that if R is a principal ideal domain the
every ideal in S is also principal. However, give an example to show that S need not be an integral domain.

Solution: First we suggest that the reader search the text to find a proof of the fact that f−1(I) is an ideal
of R for every ideal I ⊆ S.

Now we attack the proof. Suppose I ⊆ S is indeed an ideal of S, we will show that I is principal. However,
because R is a PID, φ−1(I) = (g)R for some g ∈ R. Because φ is surjective, φ(φ−1(I)) = I (I leave as an exercise
to the reader, but it is merely a fact about functions between sets, and has nothing to do with rings). Thus every
element of I is of the form φ(h) for some h ∈ (g). But all such h are of the form h = rg. Thus every element of
I has the form φ(rg) = φ(r)φ(g). In particular, they are all multiples of g. However, because r is allowed to be
arbitrary and φ is surjective, all s ∈ S appear as s = φ(r). Thus φ(φ−1(I)) = (φ(g))S and so it is principal as well.

For the example, consider φ : Z → Z mod 4 with the obvious surjective map φ(n) = n mod 4. This map is
surjective, but Z mod 4 is certainly not an integral domain.

14. Let Q[
√

2] = {a + b
√

2|a, b ∈ Q} and Q[
√

5] = {a + b
√

5|a, b ∈ Q} Prove that both rings are fields but that
they are not isomorphic.

Solution: First we show that Q[
√

2] is a field. All these rings are subrings of R so we do some of our

computations there. First suppose that a+ b
√

2 is non-zero (meaning either a or b is non-zero, possibly both being
non-zero). Then

1

a+ b
√

2
=
a− b

√
2

a− b
√

2

1

a+ b
√

2
=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2
− b

a2 − 2b2

√
5 ∈ Q[

√
2]

as desired. This work shows that non-zero element has an inverse as long as a2 − 2b2 6= 0. To show this last step,
suppose a2−2b2 = 0, then a2 = 2b2. If b = 0, then automatically a = 0 which is a contradiction to our assumptions.
If b 6= 0, then (a/b)2 = 2, proving that

√
2 = a/b ∈ Q. But

√
2 is irrational.

Likewise, we show that Q[
√

5] is a field. Again notice that

1

a+ b
√

5
=
a− b

√
5

a− b
√

5

1

a+ b
√

5
=
a− b

√
5

a2 − 5b2
=

a

a2 − 5b2
− b

a2 − 5b2

√
5 ∈ Q[

√
5].

Similar arguments as above prove that this element has non-zero denominators and so does really make sense. Thus
both rings are fields.

Now we show that the two fields are not isomorphic. Suppose that φ : Q[
√

2] → Q[
√

5] was indeed a ring

isomorphism. By the argument above in 11., φ(2) = 2. Thus
(
φ(
√

2)
)2

= φ(
√

2
√

2) = φ(2) = 2. Therefore, 2 is a

perfect square in Q[
√

5] = {a+b
√

5|a, b ∈ Q}. So suppose φ(
√

2) = a+b
√

5. Then 2 = (a+b
√

5)2 = a2+2ab
√

5+5b2.

In particular, 2− a2− 5b2 = 2ab
√

5. Obviously the left side is a rational number, and so the right side is a rational
number as well. But that can only happen if a or b is zero. Thus we have two cases.

Case 1. a = 0, then 2 = 02 + 20b
√

5 + 5b2 = 5b2 which implies that 2/5 is a perfect square which is ridiculous.
Case 2. b = 0 which implies that 2 = a2 which again is ridiculous. Thus both cases lead to contradiction and so
the two field cannot be isomorphic.


