HOMEWORK # 8 DUE WEDNESDAY MARCH 23RD

MATH 435 SPRING 2011

In this homework assignment, you will use the following definition of a ring.

Definition 0.1. A ring R is a set satisfying the following properties $(a, b, c \in R \text{ are arbitrary elements})$.

- (0) R has two binary operations denoted by + and \cdot .
- (1) a + b = b + a.
- (2) (a+b) + c = a + (b+c).
- (3) There is an element $0 \in R$ such that 0 + a = a = a + 0.
- (4) There is an element $-a \in R$ such that a + (-a) = 0 = (-a) + a.
- $(5) \ a(b+c) = ab + ac.$

Often rings are also assumed to satisfy the following (optional) properties.

- $(6^*) \ a(bc) = (ab)c.$ (associativity)
- (7*) ab = ba. (commutativity)
- (8*) There is an element $1 \in R$ such that 1a = a = a1. (identity)

All rings below will be assumed to satisfy (6^*) , associativity, but not necessarily (7^*) or (8^*) , unless specified.

1. Give an example of a finite noncommutative ring. Give an example of an infinite noncommutative ring that does not have a multiplicative identity.

2. Consider the set $\{0, 2, 4\}$ under addition and multiplication modulo 6. Verify that this is a ring with a multiplicative identity.

3. Give an example of a ring R with elements $a, b \in R$ such that the equation ax = b has more than one solution. Give a different example when it has zero solutions.

4. Show that a ring that is a *cyclic* group under addition is commutative.

5. Suppose that R is a ring and $a, b \in R$. For any integers $m, n \in \mathbb{Z}$, we define ma and nb to be a added to itself m-times respectively, b added to itself n-times. Find an example of distinct integers m, n and elements of a ring a, b such that ma = mb and na = nb but $a \neq b$. Show this can't happen if n and m are relatively prime.

6. Let n > 1 be an integer. Suppose that R is a ring such that $x^n = x$ for all $x \in R$. Show that ab = 0, for any $a, b \in R$ implies then that ba = 0. If n is even, prove additionally that a = -a for all $a \in R$.

7. Show that every element of $\mathbb{Z}_{\text{mod}n}$ is either a zero-divisor or a unit.

8. Suppose that R is a finite commutative ring with multiplicative identity, show that every element of R is either a zero-divisor or a unit.

9. Prove that a finite ring R must have positive characteristic.

10. Suppose that x, y belong to a ring of characteristic p where p is prime. Prove that $(x + y)^p = x^p + y^p$. Give an example to show that the equation does not hold if p = 4 (and thus is not prime).

11. Find all units, zero-divisors, and nilpotent elements in $\mathbb{Z}_{\text{mod } 3} \oplus \mathbb{Z}_{\text{mod } 6}$ (here the addition and multiplication are both component-wise).

12. Consider the set $\mathbb{Z}_{\text{mod }n}[i] = \{a + bi | a, b \in \mathbb{Z}_{\text{mod }n}\}$ with addition and multiplication defined mod n and with the relation $i^2 = -1$. Prove that this is not an integral domain if n = 2, 5 or 13 but it is an integral domain if n = 3, 7 or 11.