HOMEWORK # 7 DUE FRIDAY MARCH 4TH

MATH 435 SPRING 2011

1. Fix p a prime. Suppose that G is a finite group in which every element's order is a power of p. Prove that $|G| = p^n$ for some integer n.

2. Suppose that $|G| = p^n$ and further suppose that G is simple. Prove that |G| = p.

3. Suppose that G is a group with |G| = mp where p is a prime and 1 < m < p. Prove that G is not simple.

4. Suppose that G is a group acting on X and that $\phi : A \to G$ is a group homomorphism. Prove that a acts on X by the rule $a \cdot x = \phi(a) \cdot x$.

5. Show that the additive group \mathbb{R} acts on \mathbb{R}^2 by the rule r(x, y) = (x + ry, y).

6. Consider the group *G* of all matrices

$$\left\{ \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \mid \theta \in \mathbb{R} \right\}$$

These are matrices which rotate by θ -degrees clockwise. We view these matrices acting on \mathbb{R}^2 by multiplication. Describe the orbits of this action. For each point $q \in \mathbb{R}^2$, describe the stabilizer of q.

7. Find a finite group G acting on the set $\{1, 2, 3\}$ such that the stabilizer of 1 is bigger than the stabilizer of 2, which is the same size as the stabilizer of 3.

8. Given a subgroup $A \subseteq G$, consider the set $N_G(A) = \{g \in G | gAg^{-1} = A\}$. This subset is called the normalizer of A. Prove that A is normal if and only if $N_G(A) = G$.

9. Prove that $N_G(A)$ is always a subgroup of G which contains A. Further prove it is the unique largest subgroup in which A is normal.

10. Find an example of a subgroup $A \subseteq G$ such that $N_G(A) \supseteq A$ but that $N_G(A) \subseteq G$.

11. Give an example of a cyclic group acting on the set $\{1, 2, 3, 4\}$ such that each orbit has two elements in it.

Extra Credit #1: Prove the extra credit problem from the exam. 2 points to your homework score. Due Wednesday March 2nd.

Hint: Set M = B/A (note that $A \to B$ is injective, so viewing A as a subgroup of B is essentially harmless).

Extra Credit #2: Study the Chinese remainder theorem as follows. Worth up to 4 points on your homework score. Due Monday March 14th. The most basic case of the Chinese remainder theorem is as follows. Suppose that n_1 and n_2 are relatively prime integers and a_1, a_2 are any pair of integers. Then the system of equations $x \equiv \mod n_1 a_1, x \equiv \mod n_2 a_2$ has a solution.

Consider the following generalization. Suppose that G is a group and N_1 and N_2 are normal subgroups such that $N_1N_2 = G$ (explain why this is related to relative primality of n_1 and n_2). Fix two elements $g_1, g_2 \in G$.

Question 0.1. Does the system of equations (in cosets) $xN_1 = g_1N_1$ and $xN_2 = g_2N_2$ always have a solution for $x \in G$? Either prove it or provide a counter-example. If it doesn't hold, does it hold if you assume G is Abelian? What if you assume G is cyclic.

The more general Chinese remainder theorem holds for collections of integers n_1, \ldots, n_k which are pairwise relatively prime, and for arbitrary collections of integers a_1, \ldots, a_k . In particular, the system of equations (for all i) $x \equiv \mod n_i a_i$ always has a solution.

Question 0.2. Suppose that G is a group and N_1, \ldots, N_k are normal subgroups such that $N_i N_j = G$ for all $i \neq j$. Fix elements $g_1, \ldots, g_k \in G$. Does the system of equations $xN_1 = g_1N_1, \ldots, xN_k = g_kN_k$ always have a solution for some $x \in G$? What if G is Abelian, or cyclic? Prove it or give a counter-example.