HOMEWORK # 6 DUE FRIDAY FEB. 18TH

MATH 435 SPRING 2011

1. Suppose that G is a finite group. Prove that there is an injective group homomorphism $G \to S_n$ for some integer $n \ge 1$. This fact is sometimes called: "every group is isomorphic to a subgroup of a permutation group."

2. Prove that U(8) is isomorphic to U(12).

3. Prove that \mathbb{Z} and \mathbb{Q} are not isomorphic (as groups under addition).

4. Consider the group $G = \mathbb{C} \setminus \{0\}$ of non-zero complex numbers under multiplication. Consider the function $\phi : G \to G$ which sends a + bi to a - bi. Prove that this gives an isomorphism of G with itself.

5. Consider the group U(30) and the subgroup $H = \langle 7 \rangle$. Compute all the cosets of H.

6. Find all the normal subgroups of S_4 .

7. Consider the group GL(2) of invertible 2×2 -matrices. Set H to be the subgroup of GL(2) to be the group of matrices with determinant equal to 1. Prove that H is a normal subgroup of GL(2). **8.** Consider $H \subseteq U(30)$ in 5. Is U(30)/H abelian? Is it cyclic?

9. Set G to be a group and set $Z(G) = \{x \in G | xg = gx \forall g \in G\}$. Show that Z(G) is always a normal subgroup of G.

10. Suppose that G is a group and G/Z(G) is cyclic. Prove that Z(G) = G.

11. Suppose that G is a group with $|G| = p^3$ where p is prime. Prove that $|Z(G)| \neq p^2$.

12. Suppose that N is a normal subgroup of a group G and H is any other subgroup. Show that

$$NH = \{nh | n \in N, h \in H\}$$

is a subgroup of G. If H is normal, prove that NH is also normal. Give an example where N and H are not normal and that NH is not even a subgroup.