HOMEWORK # 3 DUE FRIDAY JAN. 28TH

MATH 435 SPRING 2011

1. Prove that any group with 2, 3, 4 or 5 elements must be Abelian.

2. Give an example of a group with 6 elements which is not Abelian.

3. Consider the set $G = \{a + b\sqrt{2} | a, b \in \mathbb{Q}$ where either $a \neq 0$ or $b \neq 0\}$. Show that G is a group where the binary operation is ordinary multiplication.

4. Write each permutation below in disjoint cycle notation and compute the order of the permutation.

- (i) (12)(134)(152)
- (ii) (21)(25)(24)(23)
- (iii) (1243)(3521)

5. Compute the inverses of the permutations in problem 4.

6. Show that a product of an even permutation with an odd permutation is odd, but that a product of an odd permutation with an odd permutation is even. Which of the permutations in problem 5. are even and which are odd? (justify your answer)

7. Consider S_n the group of permutations on the set $\{1, \ldots, n\}$. Fix $k \in \{1, \ldots, n\}$ and consider the set

$$\operatorname{stab}(k) = \{ \alpha \in S_n | \alpha(k) = k \}.$$

Prove that stab(k) is a group with function composition as the binary operation (this group is called the *stabilizer of a*). In particular, prove that composition really is a binary operation on stab(k).

8. Suppose that p is an odd prime. Prove that there is no group that has exactly p elements of order p.

9. Suppose that β is a 9-cycle (ie, a cycle with 9 elements in it, for example (123456789) is a 9-cycle). For which $i \in \mathbb{Z}$ is β^i also a 9-cycle?