HOMEWORK # 12 DUE WEDNESDAY APRIL 27TH

In this homework assignment, all rings with be commutative associative with unity (multiplicative identity). Ring homomorphisms will always be assumed to send 1 to 1.

1. Using only the fact that \mathbb{R} is uncountable, prove that there must exist a transcendental element $\alpha \in \mathbb{R}$ (this is much easier than proving that π or e is transcendental).

Hint: Recall that a set S is called uncountable if it is infinite and there is no bijection $\phi : S \to \mathbb{Z}$. You may use the fact that \mathbb{Q} is countable, a countable (or finite) union of countable sets is still countable, and finite product of countable sets is also countable.

2. Prove that every algebraic extension of \mathbb{R} is degree 1 or 2.

Hint: You may take as given that \mathbb{C} is algebraically closed, meaning that there is no finite extension of \mathbb{C} .

3. Find the splitting field of $x^5 - 2$ over \mathbb{Q} . Find the degree of this splitting field over \mathbb{Q} .

4. Suppose that \mathbb{F} is a finite field. Prove that the group of units, $G = \mathbb{F} \setminus \{0\}$, is a cyclic group. Do not use the characterization of a cyclic group in Rotman which says that a group is cyclic if and only it has exactly one subgroup of order m for each integer m dividing the order of the group.

5. Find an element $\alpha \in \mathbb{R}$ such that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\alpha)$.

6. Suppose that k is a field and K is an extension field. Further suppose that K_1 and K_2 are two extensions of k contained in K. We then define K_1K_2 to be the smallest subfield of K containing both K_1 and K_2 . Prove that

$$[K_1K_2:k] \le [K_1:k][K_2:k]$$

Further, give an example which shows that this inequality can sometimes be =. Give another example which shows that this inequality can sometimes be <.

7. Prove that d divides n if and only if $x^d - 1$ divides $x^n - 1$.

8. Find $[\mathbb{F}_{p^n}:\mathbb{F}_{p^d}]$ if d divides n (in particular, show that \mathbb{F}_{p^d} can be viewed as a subfield of \mathbb{F}_{p^n}).

9. Find $\operatorname{Aut}(L/\mathbb{Q})$ where L is the splitting field you constructed in problem **3.**.

10. Find the smallest field with exactly 6 subfields, note $\{0\}$ is not a subfield.

11. Prove or disprove. Fix k to be a field of characteristic p > 0, the ring homomorphism $\phi : k \to k$ defined by $\phi(x) = x^p$ is always:

- (a) the identity.
- (b) an isomorphism.
- (c) an injection.

12. Prove that $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \frac{1/3}{\sqrt{2}}, \frac{1/4}{\sqrt{2}}, \dots)$ is an algebraic extension of \mathbb{Q} but not a finite extension of \mathbb{Q} .

Extra Credit (Due Friday, April 29th) Do NOT turn in with your regular homework.

1. Suppose that k is an algebraically closed field. Prove that the maximal ideals of k[x, y, z] are in bijection with the vector space k^3 . For each maximal ideal $\mathfrak{m} \subseteq k[x, y, z]$, and each $f(x, y, z) \in k[x, y, z]$ explain why the coset $f(x, y, z) + \mathfrak{m}$ is evaluation at the point in k^3 corresponding to \mathfrak{m} . (1 point)

2. Suppose that R is an integral domain. A multiplicative system of R is a collection W of non-zero elements of R, also containing 1, such that for all $x, y \in W$, $xy \in W$. Given $f \in R$, show that $\{1, f, f^2, f^3, ...\}$ is multiplicative system. Further show that for any ideal $P \subseteq R$, $R \setminus P$ is a multiplicative system if and only if P is prime. (1 point) **3.** For any multiplicative system $W \subseteq R$, consider the subset $W^{-1}R = \{[(a, w)] \in K(R) | a \in R, w \in W\}$. Show that $W^{-1}R$ is a subring of K(R) which contains R. (1 point)

4. Suppose that R is an integral domain and $W \subseteq R$ is a multiplicative system. Prove that the prime ideals of $W^{-1}R$ are in bijective correspondence with the prime ideals Q of R such that $Q \cap W = \emptyset$. Furthermore, if P is a prime ideal of R and $W = R \setminus P$, prove that $W^{-1}R$ has a unique maximal ideal. (1 point)

5. Set R = k[x, y, z] and suppose $f \in R$. Set $W = \{1, f, f^2, f^3, ...\}$. Describe geometrically the maximal ideals of $W^{-1}R$ as a subset of k^3 (using a similar idea to problem 4.). (1 point)