HOMEWORK # 10 DUE WEDNESDAY APRIL 13TH

MATH 435 SPRING 2011

For this homework, we assume all rings are commutative, associative and with multiplicative identity. We assume that all homomorphisms send 1 to 1.

1. Show that a ring R is Noetherian if and only if for every ideal $I \subseteq R$, there exists elements $x_1, \ldots, x_n \in I$ such that $I = (x_1, \ldots, x_n)$. We talked through this in class on Wednesday April 6th, but now write down the details carefully.

2. Suppose that R is a unique factorization domain. Prove that every irreducible element in R is prime.

3. Prove or disprove, every subring of a PID is a PID.

4. Same question as #3., but with UFD.

5. Show that 1 - i is irreducible in $\mathbb{Z}[i]$.

6. Prove that every non-zero prime ideal in a PID is maximal.

7. Suppose that $\phi : R \to S$ is a surjective ring homomorphism. Suppose that $x \in R$ is an irreducible element. Is it true that $\phi(x)$ is also irreducible? Prove it or give a counter-example.

8. Show that a non-constant polynomial from $\mathbb{Z}[x]$ that is irreducible (as an element of $\mathbb{Z}[x]$) is primitive.

9. Show that $x^4 + 1 \in \mathbb{Q}[x]$ is irreducible. But $x^4 + 1 \in \mathbb{R}[x]$ is reducible (not irreducible).

10. Explicitly construct a field with 49 elements.

11. Determine which of the following polynomials below are irreducible over \mathbb{Q} (ie, irreducible elements of $\mathbb{Q}[x]$.

(a)
$$x^5 + 9x^4 + 12x^2 + 6$$

(b) $x^4 + x + 1$
(c) $x^4 + 3x^2 + 3$
(d) $x^5 + 5x^2 + 1$
(e) $\frac{5}{2}x^5 + \frac{9}{2}x^4 + 15x^3 + \frac{3}{7}x^2 + 6x + \frac{3}{14}$