INFO ON THE FINAL EXAM

MATH 435 SPRING 2011

There will be 6 pages of regular questions on the exam and one extra-credit question.

- (1) There will be two pages of short answer questions (for example, define the term *subgroup*, *ideal*, *Noetherian ring*, *transcendental element* or give an example of an non-Abelian group of order 6, an integral domain with 4 elements, or a polynomial which is irreducible over \mathbb{Q} but not over \mathbb{R} , or I might ask you to prove that $\phi(e_G) = e_H$ if $\phi : G \to H$ is a group homomorphism, or to show that every maximal ideal is prime, or that $f(x) \in k[x]$ has a double root if f'(x) and f(x) have common factor).
- (2) There will be one proof problem focusing on specific computations with rings, fields and polynomials.
- (3) There will be one abstract proof-based problem (anything is fair game).
- (4) I will ask you two of the following questions:
 - (a) Prove Lagrange's theorem.
 - (b) Prove that every finite group is isomorphic to a subgroup of some group S_n .
 - (c) Prove that every non-zero prime ideal in a PID is a maximal ideal.
 - (d) Prove that every finite field has order p^n for some prime p > 0 and some integer n > 0.
 - (e) State and prove the class equation (a group acting on itself by conjugation...)
 - (f) Suppose that $F \subseteq K \subseteq L$ is an extension of fields. Prove that [L:F] = [L:K][K:F].
 - (g) Prove that every finite extension of fields is algebraic.
 - (h) Prove that k[x] is a PID.
 - (i) Prove that an irreducible polynomial over a field k, where either k is characteristic zero or a finite field, cannot have a multiple root in any extension field.

I won't give you any details about what will be on the extra credit question.