
SOLUTIONS TO FIELD EXTENSION REVIEW SHEET

MATH 435 SPRING 2011

1. Polynomials and roots

Exercise 1.1. Prove that Q[i] = Q(i).

Solution: We need to prove that Q[i] is a field. So choose a+ bi ∈ Q[i], with a+ bi 6= 0.
Then 1/(a+ bi) = (a− bi)/(a2 + b2) = a

a2+b2
+ −b

a2+b2
i ∈ Q[i]. As desired.

Exercise 1.2. Now, suppose K is a field, and p(x) ∈ K[x] is an irreducible polynomial
(and non-zero). Prove that K[x]/〈p(x)〉 is a field by proving that 〈p(x)〉 is maximal (use
the fact that K[x] is a PID).

Solution: Suppose there exists an ideal 〈p(x)〉 ⊆ I ⊆ K[x]. Because K[x] is a PID,
I = 〈q(x)〉 for some q(x) ∈ K[x]. Thus p(x) ∈ 〈q(x)〉. In other words, there exists a
r(x) ∈ K[x] such that p(x) = r(x)q(x). Since p(x) is irreducible, either r(x) or q(x) is a
unit. If r(x) is a unit then q(x) = p(x) 1

r(x) and so q(x) ∈ 〈p(x)〉 proving that I = 〈p(x)〉. If

q(x) is a unit, then I = K[x]. Thus we have proven that 〈p(x)〉 is maximal.

Exercise 1.4. Suppose that k ⊆ E is a field extension and α ∈ E is a root of an irreducible
polynomial p(x) ∈ k[x]. Then prove that

k[x]/〈p(x)〉 ∼= k[α] = k(α).

Note you have to prove two statements.

Solution: First consider the map φ : k[x] → k[α] which sends f(x) to f(α). This
map is clearly surjective and f(x) is in the kernel if and only if f(α) = 0. Since p(α) = 0,
p(x) ∈ I = ker(φ). But 〈p(x)〉 is maximal, and I is clearly not k[x] (since 1 goes to 1, not
zero), thus I = 〈p(x)〉. By the first isomorphism theorem, k[x]/I = k[x]/〈p(x)〉 ∼= k[α].
This proves the first part.

Now, the left side of that equation is a field and thus k[α] is a field. But k[α] ⊆ k(α) and
k(α) is the smallest field containing k and α so k[α] = k(α), proving the second part.

2. Vector spaces

Exercise 2.2. Suppose that F ⊆ K is a field extension. Prove that K is an F -vector-space
with the multiplication rule a.b = ab for a ∈ F and b ∈ K.

Solution: Of course K is already an Abelian group under addition. Now we check the
vector space properties. Certainly 1.b = 1b = b. Likewise a.(b + c) = a(b + c) = ab + ac =
a.b + a.c and (a + a′).b = ab + a′b = a.b = a′.b and finally (aa′).b = (aa′)b = a(a′b) =
a(a′.b) = a.(a′.b). Thus it is a vector space.

Exercise 2.4. Suppose that K is a field and that p(x) ∈ K[x] is irreducible. Find a basis
for K[x]/〈p(x)〉 over K. Prove that the set you found really is a basis.

Solution: Set d to be the degree of p(x) and write I = 〈p(x)〉 for simplicity. Consider
the set B = {1 + I, x + I, x2 + I, . . . , xd−1 + I}. We prove that this is a spanning set for
K[x]/I. First choose g(x) + I and write g(x) = p(x)q(x) + r(x) with deg r(x) < d. Then
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g(x) + I = r(x) + I and so g(x) is equal to a K-linear combination of the elements in B.
This proves that B is a spanning set.

Now suppose that

0 + I = (a01 + I) + (a1x+ I) + · · ·+ (ad−1x
d−1 + I) = (a0 + a1x+ · · ·+ ad−1x

d−1) + I

for some ai ∈ K. Thus (a0 +a1x+ · · ·+ad−1x
d−1) ∈ I (we just need the version for Abelian

groups here). But this means that p(x) divides a0 + a1x+ · · ·+ ad−1x
d−1 which is absurd

for degree reasons, unless all the ai are zero. Thus all the ai are zero which proves that B
is linearly independent.

3. Extension degree

Exercise 3.2. Prove the following.

(i) [R : Q] =∞.
(ii) [Q[

√
7] : Q] = 2.

(iii) [Q[x]/(x5 + 5x2 + 10) : Q] = 5.
(iv) If k ⊆ L is a finite extension, and k ⊆ K ⊆ L is a subextension, then k ⊆ K and

K ⊆ L are also finite.

Solution:

(i) Certainly R contains roots of xn − 2 for all integers n. Each of those live in an
extension of degree at least n by Exercise 2.4. This means that [R : Q] is bigger
than any integer.

(ii) Q[
√

7] ∼= Q[x]/〈x2− 7〉 which obviously is a two-dimensional vector space over Q by
Exercise 2.4.

(iii) The polynomial is irreducible by Eisenstein, and so again the result follows by
Exercise 2.4.

(iv) Choose a basis l1, . . . , ln for L over k. This serves as a spanning set for L over K
and so L’s basis over K may have even fewer elements than n (but certainly finite).
For K over k, just observe that K is a subspace of a finite dimensional vector space.

One of the main tools for measuring extension degree is as follows:

Exercise 3.4. Use the previous theorem to prove the following.

(i)
√

3 is not contained in Q[31/5].

(ii)
√

3 is not contained in Q[31/3, 21/3].
(iii) The 7th root of two is not contained in the splitting field of x5 − 2 over Q.
(iv) If Fpd is a subset of Fpn then d divides n.

Solution:

(i)
√

3 can only live in extensions over Q of even degree by Theorem 3.3. The given
extension has degree 5.

(ii) We leave it to you (possibly with the aid of a computer algebra system) to prove

that 21/3 is not in Q[31/3]. Consider the polynomial x3 − 2. This polynomial has

one real root, 21/3 and two complex roots, neither of which are in Q[31/3]. Thus

x3 − 2 is irreducible in Q[31/3] and so Q[31/3, 21/3] is a degree (3)(3) = 9 extension
of Q. But 2 does not divide 9, and so

√
3 cannot be in there.

(iii) One obtains the splitting field by adjoining one root at a time. The degree of the
splitting field is of the form (5)(a)(b)(c)(d) where a ≤ 4, b ≤ 3, c ≤ 2 and d ≤ 1.
The prime number 7 cannot divide that product.

(iv) Fpd is a degree d extension of Fp (it has pd different elements). Likewise Fpn is a
degree n extension. Thus d divides n by Theorem 3.3.
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4. Algebraic and transcendental elements

Exercise 4.3. Prove that every x ∈ k is algebraic over k.

Solution: It is a root of the polynomial z − x ∈ k[z] and thus algebraic.

Exercise 4.7. Suppose that k ⊆ E is an extension field and β ∈ E is transcendental over
k. Then k[β] ∼= k[x], the polynomials in x with coefficients in k.

Solution: Consider the function φ : k[x]→ k[β] defined by φ(g(x)) = g(β).. Certainly
this function is surjective. As before, the kernel is all elements g(x) ∈ k[x] such that
g(β) = 0, but since β is transcendental, there are no such elements except the constant
zero. Thus k[x] ∼= k[x]/〈0〉 ∼= k[β] as desired.

5. Splitting fields

Exercise 5.3. Determine whether or not the following extensions are splitting fields.

(i) F3 ⊆ F3[x]/〈x5 + 1〉 for the polynomial x5 + 1 ∈ F3[x].
(ii) Q ⊆ C for the polynomial x2 + 1 ∈ Q[x].

(iii) Q ⊆ Q[
√

2] for the polynomial x2 − 2.

(iv) Q ⊆ Q[i51/4] for the polynomial x4 − 5.

Solution:

(i) No. The polynomial x5+1 is not even irreducible since 2 is a root. Thus F3[x]/〈x5+
1〉 is not a field and this is not a splitting field.

(ii) No. While x2 + 1 certainly splits in Q, C is certainly not the smallest extension in
which x2 + 1 splits, so this is not a splitting field.

(iii) Yes, x2 − 2 factors as (x−
√

2)(x+
√

2) and since the degree of the extension is 2,
this must be the smallest such extension.

(iv) No, i51/4 is a root so Q[i51/4] ∼= Q[x]/(x4 − 5) ∼= Q[51/4]. But Q[51/4] is not the

splitting field since it doesn’t contain the root i51/4 (since it is in R). Since x4 − 5

doesn’t split in Q[51/4], it doesn’t split in the isomorphic field Q[i51/4] either.

Exercise 5.4. Show that the splitting field for x(p
n) − x over Fp has exactly pn elements.

Solution: The solutions to x(p
n)− x form a field as we’ve shown before in class. There

are also no multiple roots by the derivative test, so there are pn such roots. Therefore the
smallest field containing all those roots is exactly the field made up of those pn elements.


