SOLUTIONS TO FIELD EXTENSION REVIEW SHEET

MATH 435 SPRING 2011

1. POLYNOMIALS AND ROOTS
Exercise 1.1. Prove that Q[i] = Q(¢).

Solution: We need to prove that Q[é] is a field. So choose a+bi € Q[i], with a+bi # 0.
Then 1/(a + bi) = (a — bi)/(a® + b?) = =% + =i € Q[i]. As desired.

Exercise 1.2. Now, suppose K is a field, and p(z) € KJz| is an irreducible polynomial
(and non-zero). Prove that K[z]/(p(x)) is a field by proving that (p(x)) is maximal (use
the fact that K[z] is a PID).

Solution: Suppose there exists an ideal (p(z)) C I C K|x]. Because K|z] is a PID,
I = (q(z)) for some g(z) € Klz]. Thus p(z) € (q(z)). In other words, there exists a
r(z) € K[z] such that p(x) = r(x)q(z). Since p(x) is irreducible, either r(z) or ¢(z) is a
unit. If r(x) is a unit then ¢(z) = p(x)% and so ¢(z) € (p(z)) proving that I = (p(x)). If
¢(z) is a unit, then I = K[z]. Thus we have proven that (p(z)) is maximal.

Exercise 1.4. Suppose that £ C F is a field extension and « € F is a root of an irreducible
polynomial p(z) € k[z]. Then prove that

klz]/(p(x)) = kla] = k().

Note you have to prove two statements.

Solution: First consider the map ¢ : k[x] — k[a] which sends f(z) to f(«). This
map is clearly surjective and f(z) is in the kernel if and only if f(a) = 0. Since p(a) = 0,
p(z) € I =ker(¢). But (p(x)) is maximal, and I is clearly not k[z] (since 1 goes to 1, not
zero), thus I = (p(x)). By the first isomorphism theorem, k[z]/I = k[z]/(p(z)) = k[a].
This proves the first part.

Now, the left side of that equation is a field and thus k[a] is a field. But k[a] C k(«) and
k(a) is the smallest field containing k and « so k[a] = k(«a), proving the second part.

2. VECTOR SPACES

Exercise 2.2. Suppose that F' C K is a field extension. Prove that K is an F-vector-space
with the multiplication rule a.b = ab for a € F and b € K.

Solution: Of course K is already an Abelian group under addition. Now we check the
vector space properties. Certainly 1.b = 1b = b. Likewise a.(b+¢) = a(b+¢) = ab+ ac =
a.b+ a.c and (a + da’).b = ab+ d'b = a.b = d’.b and finally (ad’).b = (ad')b = a(a’b) =
a(a’.b) = a.(a’.b). Thus it is a vector space.

Exercise 2.4. Suppose that K is a field and that p(z) € K|z] is irreducible. Find a basis
for K[x]/(p(x)) over K. Prove that the set you found really is a basis.

Solution: Set d to be the degree of p(z) and write I = (p(z)) for simplicity. Consider
the set B= {1+ Lo+ I 2>+1,...,29 1 +I}. We prove that this is a spanning set for
K(z]/I. First choose g(x) + I and write g(z) = p(z)q(z) + r(z) with degr(x) < d. Then
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g(x) +1 =r(z)+ I and so g(z) is equal to a K-linear combination of the elements in B.
This proves that B is a spanning set.
Now suppose that

0+I:(CLO]."—.[)+(a1$+1)+"‘+(ad_1xdil—|—_[):(a0+a1x+...+ad_lmd71)+l

for some a; € K. Thus (ag+ a1z +---+ag_12%7') € T (we just need the version for Abelian
groups here). But this means that p(x) divides ag + aijz + - - + ag_12%~! which is absurd
for degree reasons, unless all the a; are zero. Thus all the a; are zero which proves that 15
is linearly independent.

3. EXTENSION DEGREE

Exercise 3.2. Prove the following.

(i) R:Q] =

(it) [Q[v7]: ] =2

(iii) [Q[z]/(z® + 522 +10) : Q] = 5.

(iv) If k C L is a finite extension, and k C K C L is a subextension, then & C K and
K C L are also finite.

Solution:

(i) Certainly R contains roots of 2™ — 2 for all integers n. Each of those live in an
extension of degree at least n by Exercise 2.4. This means that [R : Q] is bigger
than any integer.

(i) Q7] = Q[z]/(x? — 7) which obviously is a two-dimensional vector space over Q by
Exercise 2.4.

(iii) The polynomial is irreducible by Eisenstein, and so again the result follows by
Exercise 2.4.

(iv) Choose a basis [y,...,l, for L over k. This serves as a spanning set for L over K
and so L’s basis over K may have even fewer elements than n (but certainly finite).
For K over k, just observe that K is a subspace of a finite dimensional vector space.

One of the main tools for measuring extension degree is as follows:

Exercise 3.4. Use the previous theorem to prove the following.
(i) v/3 is not contained in Q[3'/9].
(ii) v/3 is not contained in Q[3'/3,21/3].
(iii) The 7th root of two is not contained in the splitting field of 25 — 2 over Q.
(iv) If Fpa is a subset of Fyn then d divides n.

Solution:

(i) v/3 can only live in extensions over Q of even degree by Theorem 3.3. The given
extension has degree 5.

(ii) We leave it to you (possibly with the aid of a computer algebra system) to prove
that 21/3 is not in Q[31/ 3]. Consider the polynomial 2% — 2. This polynomial has
one real root, 2'/3 and two complex roots, neither of which are in Q[31/ 3]. Thus
2% — 2 is irreducible in Q[3'/3] and so Q[3'/3,21/3] is a degree (3)(3) = 9 extension
of Q. But 2 does not divide 9, and so \/3 cannot be in there.

(iii) Ome obtains the splitting field by adjoining one root at a time. The degree of the
splitting field is of the form (5)(a)(b)(c)(d) where a < 4, b < 3, ¢ <2 and d < 1.
The prime number 7 cannot divide that product.

(iv) F,a is a degree d extension of F, (it has p? different elements). Likewise Fyn is a
degree n extension. Thus d divides n by Theorem 3.3.



SOLUTIONS TO FIELD EXTENSION REVIEW SHEET 3

4. ALGEBRAIC AND TRANSCENDENTAL ELEMENTS
Exercise 4.3. Prove that every x € k is algebraic over k.
Solution: It is a root of the polynomial z — = € k[z] and thus algebraic.

Exercise 4.7. Suppose that k¥ C F is an extension field and 8 € FE is transcendental over
k. Then k[f] = k[z], the polynomials in = with coefficients in k.

Solution: Consider the function ¢ : k[z] — &[] defined by ¢(g(x)) = g(5).. Certainly
this function is surjective. As before, the kernel is all elements g(z) € k[z] such that
g(B8) = 0, but since g is transcendental, there are no such elements except the constant
zero. Thus klz| = k[z]/(0) = k[S] as desired.

5. SPLITTING FIELDS

Exercise 5.3. Determine whether or not the following extensions are splitting fields.
(i) F3 C F3[z]/(z® + 1) for the polynomial z° + 1 € F3[x].
(i) Q C C for the polynomial 22 + 1 € Q[z].
(iii) Q@ € Q[v/2] for the polynomial x? — 2.
(iv) Q C Q[i5'/4] for the polynomial z* — 5.

Solution:

(i) No. The polynomial 2°+1 is not even irreducible since 2 is a root. Thus Fs[z] /(x5 +

1) is not a field and this is not a splitting field.

(ii) No. While 22 4 1 certainly splits in Q, C is certainly not the smallest extension in
which 22 + 1 splits, so this is not a splitting field.

(iii) Yes, x? — 2 factors as (z — v/2)(x + v/2) and since the degree of the extension is 2,
this must be the smallest such extension.

(iv) No, i5'/* is a root so Q[i5"/4] = Qz]/(z* — 5) = Q[5'/4]. But Q[5'/4] is not the
splitting field since it doesn’t contain the root i5'/* (since it is in R). Since z* — 5
doesn’t split in Q[5'/4], it doesn’t split in the isomorphic field Q[i5'/4] either.

Exercise 5.4. Show that the splitting field for z®") — 2 over [F,, has exactly p" elements.

Solution: The solutions to z(*") — 2 form a field as we’ve shown before in class. There
are also no multiple roots by the derivative test, so there are p™ such roots. Therefore the
smallest field containing all those roots is exactly the field made up of those p” elements.



