HOMEWORK #11 — MATH 3210,
FALL 2019

DUE TUESDAY, NOVEMBER 12TH

6.2, #2 4+ #3. Determine whether the indicated series converges. Justify your answer by indicating the test
to be used and carrying out the details of that test.
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6.2, #5 + #T7. Determine whether the indicated series converges. Justify your answer by indicating the test
to be used and carrying out the details of that test.
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6.2, #11. Prove that if Y - | a, converges absolutely and {b;} is a bounded sequence, then
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also converges absolutely.



6.2, #12. Prove that if > - ay and Y -, by are series and ay = by, except for finitely many terms, then
the two series either both converge or both diverge.
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also converges absolutely.



6.3, #2 + #4. Determine whether the following series converges absolutely, converges conditionally, or
diverges. Justify your answer.
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6.3, #6. Give an example of two convergent series > o, ar and > p—, by such that the series Y 7o | axbs
diverges.



6.3, #10. Modify the proof of Theorem 6.3.4 to show that if Y- | a; is conditionally convergent, then the
exists a rearrangement that converges to oco.



6.3, #11. The geoemtric series Z;O:O 27% converges to 2. Use Theorem 6.3.6 to show that the series
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converges to 4.
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6.4, #1. Prove that the function % is continuous on the interval [—1,1].



