WORKSHEET #8 - MATH 3210 FALL 2018

NOT DUE

You may work in groups of up to 4. This worksheet covers similar material to the upcoming midterm.

1. Short answer questions.

(a) Give a precise definition of the statement $\lim a_n = -\infty$.

(b) Suppose $f : \mathbb{R} \to \mathbb{R}$ is the function $f(x) = x^2 + 1$. Compute $f^{-1}(\{5\} \cup (1, 2])$.

(c) Suppose $S \subseteq \mathbb{R}$ is a bounded set. Give a precise definition of $\inf(S)$.

(d) Give an example of a non-continuous function $f: [0,1] \to \mathbb{R}$ so that f([0,1]) = [0,1].

(e) Give a short proof that if $\lim a_n = K$ and $\lim b_n = L$, then $\lim(a_n + b_n) = K + L$.

2. More short answer questions.

(a) Give an example of an integrable function that is not continuous.

(b) Suppose $f:(a,b) \to \mathbb{R}$ is differentiable. Use the Mean Value theorem to give a short proof of the fact that if f'(x) = 0 for all $x \in (a, b)$, then f is constant.

(c) Give an example of a function $f : [1,3] \to \mathbb{R}$ and two partitions $P \subseteq Q$ of [1,3] so that U(f,P) > U(f,Q).

(d) Suppose $\sum_{k=0}^{\infty} c_k (x-a)^k$ is a power series. Give a precise definition of this series' radius of convergence.

(e) Give an example of a convergent series that is not absolutely convergent.

(f) Suppose $I \subseteq \mathbb{R}$ is an interval. Precisely define what it means that for a sequence of functions $f_n : I \to \mathbb{R}$ to uniformly converge to a function $f : I \to \mathbb{R}$.

3. Even more short answer questions.

(a) Compute the radius of convergence of the power series $1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + \cdots = \sum_{k=0}^{\infty} (-1)^k (x - 1)^k$.

(b) Derive a closed formula for the sum $\sum_{k=0}^{\infty} r^k$ for real numbers |r| < 1.

- (c) Is the series $\sum_{k=2}^{\infty} \frac{(-1)^k k^2}{k!}$ absolutely convergent, conditionally convergent or divergent.
- (d) Precisely state Taylor's theorem on infinite series.
- (e) State the first fundamental theorem of calculus.
- (f) Compute $\frac{d}{dx} \int_2^{\ln(x)} e^{t^2} dt$.

(g) Compute $\lim_{x \to 0} \frac{(\sin(x))^2}{x \cos(1/x)}$ or show that it doesn't exist.

(h) Precisely state the Weierstrass *M*-test.

- 4. Even more short answer questions.
 - (a) Precisely state the archimedean property of the real numbers.
 - (b) Give an example of a differentiable function $f : \mathbb{R} \to \mathbb{R}$ whose derivative is not continuous.
 - (c) If $f:[a,b] \to \mathbb{R}$ is integrable, is the function $g(x) = \int_a^x f(t) dt$ always continuous? Always differentiable?
 - (d) Is every analytic function differentiable?
 - (e) State the completeness axiom of the real numbers.
 - (f) Precisely define what it means for a sequence a_n to be Cauchy.
 - (g) Is every Cauchy sequence bounded?
 - (h) Precisely state the Bolzano Weierstrass theorem.

5. Suppose $\sum_{k=1}^{\infty} a_k$ is conditionally convergent (and in particular, not absolutely convergent). Let $a_{p(k)}$ is the subsequence of positive terms of the sequence a_k and $a_{n(k)}$ is the subsequence of non-positive terms of a_k . Show that $\sum_{k=1}^{\infty} a_{p(k)}$ diverges and $\sum_{k=1}^{\infty} a_{n(k)}$ diverges.

Hint: Suppose one converged to some finite number L. Derive a contradiction.

6. Suppose that $\sum_{k=1}^{\infty} a_k$ is a conditionally convergent series. Prove there is a reordering of the series that converges to ∞ .

Hint: What you need to do is show there is a reordering so that for every K, there is an N, so that $\sum_{k=1}^{n} a_k > K$ for all n > N. One way to do this is to consider a sequence of integer Ks, maybe = 1, 2, 3, 4, ..., and rig things so that the partial sums get bigger than each K (and stay bigger than each K).

7. Suppose that $f_n : [a, b] \to \mathbb{R}$ is a sequence of continuous functions such that $f_n(x)$ converges to f(x) uniformly. Show that

$$\lim_{n} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx.$$

Hint: Choose $\epsilon > 0$. Choose N so that if n > N, then $|f_n(x) - f(x)| < \epsilon/(b-a)$ for n > N for all $x \in [a, b]$. Consider $f_n(x) - \epsilon/(b-a) < f(x) < f_n(x) + \epsilon/(b-a)$, and integrate.

8. Use the previous exercise to show that if $f_k : [a,b] \to \mathbb{R}$ is a sequence of continuous functions such that $\sum_k^{\infty} f_k(x)$ converges uniformly to a function g(x), then $\sum_{k=1}^{\infty} \int_a^b f_k(t) dt = \int_a^b g(t) dt$.

9. Compute the limit (if you dare):

$$\lim_{x \to 0} \left(\frac{\int_0^x t e^{t^3} dt}{\sum_{k=0}^\infty k^2 x^k} \right)$$

10. Suppose that $\{a_n\}$ converges to 0. Define a new sequence b_n as follows:

$$b_n = \begin{cases} a_n & \text{if } n \text{ is odd} \\ 1/n & \text{if } n \text{ is even} \end{cases}$$

In other words $\{b_n\}$ is the sequence

$$\{a_1, 1/2, a_3, 1/4, a_5, 1/6, a_7, 1/8, \dots\}.$$

Prove that b_n also converges to 0.

11. Consider the function $f(x) = \frac{x+1}{x+3}$. Prove directly from the definition that f(x) is continuous at a = 2.

12. Prove that if f is an infinitely differentiable function on (a - r, a + r), and there is a constant K such that

$$|f^{(n)}(x)| \le K \frac{n!}{r^n}$$

for all $n \in \mathbb{N}$ and all $x \in (a - r, a_r)$, then the Taylor series for f at a converges to f on (a - r, a + r).

13. Find the Taylor series expansion for $\cos(x)$ at 0 and show it converges for all x.

14. Recall the following axioms for an ordered field F and arbitrary $x, y, z \in F$.

A1 $x + y = y + x$.	M2 $x(yz) = (xy)z.$	O2 If $x \leq y$ and $y \leq x$ then
A2 $x + (y + z) = (x + y) + z$.	M3 $\exists 1 \in F$ such that $1 \neq 0$ and	x = y.
A3 $\exists 0 \in F$ such that $0 + x =$	1x = x.	O3 If $x \leq y$ and $y \leq z$ then
x.	D $x(y+z) = xy + xz$.	$x \leq z$.
A4 For each $x \in F$, $\exists -x \in F$	F If $x \neq 0$, then $\exists x^{-1} \in F$ so	O4 If $x \le y$ then $x + z \le y + z$.
with $x + (-x) = 0$.	that $xx^{-1} = 1$.	O5 If $x \leq y$ and $0 \leq z$, then
M1 $xy = yx$.	O1 Either $x \leq y$ or $y \leq x$.	$xz \leq yz.$

Prove that if $x \leq y$ and then $-y \leq -x$ using only the axioms above. Please use complete sentences in your justification.

Hint: You aren't allowed to multiply by -1 and flip inequalities, use O4 instead.

15. Suppose that $(a,b) \subseteq \mathbb{R}$ is a non-empty open interval and that we have a differentiable function $f : (a,b) \to \mathbb{R}$ such that |f'(x)| < M for some constant M for all $x \in (a,b)$. Use the Mean Value Theorem to prove that f is uniformly continuous.

16. Suppose that a_n and b_n are sequences such that $\lim a_n = L$ and $\lim b_n = K$. Prove directly using the definition of the limit that

$$\lim(a_n \cdot b_n) = L \cdot K.$$